Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Thalidomide on the comeback trail

Abstract

Will new insights into Thalidomide's teratogenic mechanism help make its return a safe one (pages 582–585)?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lenz, W. Kindliche Missbildungen nach Medikament-Einnahme wahrend der Gravidtat? Dtsch. Med. Wochenschr. 86, 2555–2556 (1961).

    Google Scholar 

  2. McBride, W.G. Thalidomide and congenital anomalies. Lancet 2, 1358 (1961).

    Article  Google Scholar 

  3. Castilla, E.E. et al. Thalidomide, a current teratogen in South America. Teratology 54, 273–277 ( 1996).

    Article  CAS  Google Scholar 

  4. Stephens, T.D. Proposed mechanisms of action in thalidomide embryopathy. Teratology 38, 229–239 ( 1988).

    Article  CAS  Google Scholar 

  5. Parman, T., Wiley, M.J. &. Wells, P.G. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nature Med. 5, 582–585 ( 1999).

    Article  CAS  Google Scholar 

  6. Schardein, J. L. in Chemically induced Birth Defects, 2nd edition, Ch. 8, 208–270 ed. J.L. Schardein (Marcel Dekker, New York, 1993).

    Google Scholar 

  7. Arlen, R.R. & Wells, P.G. Inhibition of thalidomide teratogenicity by acetylsalicylic acid: evidence for prostaglandin H synthase-catalyzed bioactivation of thalidomide to a teratogenic reactive intermediate. J. Pharm. Exp. Ther. 277, 1649–1658 (1996).

    CAS  Google Scholar 

  8. Ozolins, T.R.S. & Hales, B.F. Glutathione homeostasis and the AP-1 response in the rat conceptus are regulated in a tissue-specific manner. Biochem. Pharmacol. (in the press).

  9. Slott, V.L. & Hales, B.F. Effect of glutathione depletion by buthionine sulfoximine on rat embryonic development in vitro. Biochem. Pharmacol. 36, 683–688 (1987).

    Article  CAS  Google Scholar 

  10. Salas-Vidal, E. et al. Reactive oxygen species participate in the control of mouse embryonic cell death. Exp. Cell Res. 238, 136–147 (1998).

    Article  CAS  Google Scholar 

  11. Sampaio, E.P., Sarno, E.N., Galilly, R., Cohn, Z.A. & Kaplan, G. Thalidomide selectively inhibits tumor necrosis factor α production by stimulated human monocytes. J. Exp. Med. 173, 699–703 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hales, B. Thalidomide on the comeback trail. Nat Med 5, 489–490 (1999). https://doi.org/10.1038/8371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/8371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing