Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New view at C

Transporters for vitamin C keep vitamin concentrations optimal in the body. A new mouse knockout of one transporter reveals previously unknown requirements for the vitamin. (pages 514–517)

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mechanisms of vitamin C transport.


  1. Tsukaguchi, H. et al. A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature 399, 70–75 (1999).

    CAS  Article  Google Scholar 

  2. Sotiriou, S. et al. Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nature Med. 8, 514–517 (2002).

    CAS  Article  Google Scholar 

  3. Miele, M., Boutelle, M.G. & Fillenz, M. The physiologically induced release of ascorbate in rat brain is dependent on impulse traffic, calcium influx and glutamate uptake. Neuroscience 62, 87–91 (1994).

    CAS  Article  Google Scholar 

  4. Wilson, J.X., Peters, C.E., Sitar, S.M., Daoust, P. & Gelb, A.W. Glutamate stimulates ascorbate transport by astrocytes. Brain Res. 858, 61–66 (2000).

    CAS  Article  Google Scholar 

  5. Spector, R. Vitamin homeostasis in the central nervous system. N. Engl. J. Med. 296, 1393–1398 (1977).

    CAS  Article  Google Scholar 

  6. Berger, U.V. & Hediger, M.A. The vitamin C transporter SVCT2 is expressed by astrocytes in culture but not in situ. Neuroreport 11, 1395–1399 (2000).

    CAS  Article  Google Scholar 

  7. Rice, M.E. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23, 209–216 (2000).

    CAS  Article  Google Scholar 

  8. Wilson, J.X. Antioxidant defense of the brain: A role for astrocytes. Can. J. Physiol. Pharmacol. 75, 1149–1163 (1997).

    CAS  Article  Google Scholar 

  9. Castro, M. et al. High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J. Neurochem. 78, 815–823 (2001).

    CAS  Article  Google Scholar 

  10. Rice, M.E., Lee, E.J. & Choy, Y. High levels of ascorbic acid, not glutathione, in the CNS of anoxia-tolerant reptiles contrasted with levels in anoxia-intolerant species. J. Neurochem. 64, 1790–1799 (1995).

    CAS  Article  Google Scholar 

  11. Hillered, L., Persson, L., Bolander, H.G., Hallstrom, A. & Ungerstedt, U. Increased extracellular levels of ascorbate in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. Neurosci. Lett. 95, 286–290 (1988).

    CAS  Article  Google Scholar 

  12. Yokoyama, T. et al. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community. The Shibata Study. Stroke 31, 2287–2294 (2000).

    CAS  Article  Google Scholar 

  13. Wilson, J.X., Dixon, S.J., Yu, J., Nees, S. & Tyml, K. Ascorbate uptake by microvascular endothelial cells of rat skeletal muscle. Microcirculation 3, 211–221 (1996).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hediger, M. New view at C. Nat Med 8, 445–446 (2002).

Download citation

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing