Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic cells directly trigger NK cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo

Abstract

Cytotoxic T lymphocytes and natural killer cells are essential effectors of anti-tumor immune responses in vivo. Dendritic cells (DC) 'prime' tumor antigen-specific cytotoxic T lymphocytes; thus, we investigated whether DC might also trigger the innate, NK cell-mediated anti-tumor immunity. In mice with MHC class I-negative tumors, adoptively transferred- or Flt3 ligand-expanded DC promoted NK cell-dependent anti-tumor effects. In vitro studies demonstrated a cell-to-cell contact between DC and resting NK cells that resulted in a substantial increase in both NK cell cytolytic activity and IFN-γ production. Thus, DC are involved in the interaction between innate and adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FL induces NK cell-dependent anti-tumor effects in an MHC class I-negative mesothelioma.
Figure 2: Neither type I IFNs nor IL-12 are involved in FL-mediated anti-tumor effects.
Figure 3: Role of the lymphoid-related DC subset.
Figure 4: DC directly stimulate NK cytolytic activity in vitro.
Figure 5: Cell contact requirement and specificity of the DC/NK cell interaction.
Figure 6: Adoptive transfer of D1 dendritic cells in B6-nude mice with AK7 tumors.

Similar content being viewed by others

References

  1. Inaba, K., Metlay, J.P., Crowley, M.T. & Steinman, R.M. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, major histocompatibility complex-restricted T cells in situ. J. Exp. Med. 172, 631–640 ( 1990).

    Article  CAS  Google Scholar 

  2. Grabbe, S. et al. Tumor antigen presentation by murine epidermal cell. J. Immunol. 146, 3656–3661 (1991).

    CAS  PubMed  Google Scholar 

  3. Zitvogel, L. et al. Therapy of murine tumors with tumor peptide pulsed dendritic cells: dependence on T cells, B7 costimulation, and Th1-associated cytokines. J. Exp. Med. 183, 87–97 (1996).

    Article  CAS  Google Scholar 

  4. Celluzzi, C.M., Mayordomo, J.I., Storkus, W.J., Lotze, M.T. & Falo Jr, L.D. Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity. J. Exp. Med. 183, 283–287 (1996).

    Article  CAS  Google Scholar 

  5. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245– 252 (1998).

    Article  CAS  Google Scholar 

  6. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623– 1626 (1997).

    Article  CAS  Google Scholar 

  7. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  8. Talmadge, J.E., Meyers, K.M., Prieur, D.J. & Starkey, J.R. Role of natural killer cells in tumor growth and metastasis: C57BL/6 normal and beige mice. Nature 284, 622– 625 (1980).

    Article  CAS  Google Scholar 

  9. Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 47, 187–303 (1989).

    Article  CAS  Google Scholar 

  10. Lanier, L.L. Follow the leader: NK cell receptors for classical and nonclassical MHC class I. Cell 92, 705–707 (1998).

    Article  CAS  Google Scholar 

  11. Kärre, K., Ljunggren, H.G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319, 675 –678 (1986).

    Article  Google Scholar 

  12. Salazar-Mather, T.P., Ishikawa, R. & Biron, C.A. NK cell trafficking and cytokine expression in splenic compartments after IFN induction and viral infection. J. Immunol. 157, 3054–3064 ( 1996).

    CAS  PubMed  Google Scholar 

  13. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819– 1829 (1997).

    Article  CAS  Google Scholar 

  14. Maraskovsky, E. et al. Dramatic increase in the number of functionally mature dendritic cells in Flt3 ligand-treated mice : multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953– 1962 (1996).

    Article  CAS  Google Scholar 

  15. Shaw, S.G., Maung, A.A., Steptoe, R.J., Thomson, A.W. & Vujanovic, N.L. Expansion of functional natural killer cells in multiple tissue compartments of mice treated with Flt3-ligand: implications for anti-cancer and anti-viral therapy. J. Immunol. 161, 2817–2824 ( 1998).

    CAS  PubMed  Google Scholar 

  16. Moalli, P.A., MacDonald, J.L., Goodglick, L.A. & Kane, A.B. Acute injury and regeneration of the mesothelium in response to asbestos fibers. Am. J. Pathol. 128, 426– 445 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. D'Andrea, A. et al. Production of natural killer cell stimulatory factor (NKSF/IL-12) by peripheral blood mononuclear cells. J. Exp. Med. 176, 1387–1398 (1992).

    Article  CAS  Google Scholar 

  18. Ardavin, C., Wu, L., Li, C.-L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761– 763 (1993).

    Article  CAS  Google Scholar 

  19. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317 –328 (1997).

    Article  CAS  Google Scholar 

  20. Hart, D.N.J. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90, 3245– 3287 (1997).

    CAS  Google Scholar 

  21. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693– 1702 (1992).

    Article  CAS  Google Scholar 

  22. Chang, Z.L., Whiteside, T.L. & Herberman, R.B. Immunoregulatory role of in vitro differentiated macrophages on human natural killer (NK)-cell activity. Cell. Immunol. 125, 183–196 (1990).

    Article  CAS  Google Scholar 

  23. Montel, A.H., Morse, P.A. & Brahmi, Z. Upregulation of B7 molecules by Epstein-Barr virus enhances susceptibility to lysis by a human NK-like cell line. Cell. Immunol. 160, 101–114 ( 1995).

    Article  Google Scholar 

  24. Carbone, E. et al. A new mechanism of NK cell cytotoxicity activation: the CD40-CD40 ligand interaction. J. Exp. Med. 185, 2053 –2060 (1997).

    Article  CAS  Google Scholar 

  25. Chambers, B.J., Salcedo, M. & Ljunggren, H.-G. Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity 5, 311– 317 (1996).

    Article  CAS  Google Scholar 

  26. Lang, S., Vujanovic, N.L., Wollenberg, B. & Whiteside, T.L. Absence of B7.1-CD28/CTLA-4-mediated co-stimulation in human NK cells. Eur. J. Immunol. 28, 780–786 (1998).

    Article  CAS  Google Scholar 

  27. Johnson, L.L. & Sayles, P.C. Interleukin-12, dendritic cells, and the initiation of host-protective mechanisms against Toxoplasma gondii . J. Exp. Med. 186, 1799– 1802 (1997).

    Article  CAS  Google Scholar 

  28. Bandyopadhyay, S., Perussia, S., Trinchieri, G., Miller, D.S. & Starr, S.E. Requirement for HLA-DR+ accessory cells in natural killing of cytomegalovirus-infected fibroblasts. J. Exp. Med. 164, 180–195 (1986).

    Article  CAS  Google Scholar 

  29. de Saint-Vis, B. et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J. Immunol. 160, 1666–1676 (1998).

    CAS  PubMed  Google Scholar 

  30. Chen, K. et al. Antitumor activity and immunotherapeutic properties of Flt3-ligand in a murine breast cancer model. Cancer Res. 57, 3511–3516 (1997).

    CAS  PubMed  Google Scholar 

  31. Lynch, D.H. et al. Flt3 ligand induces tumor regression and anti-tumor immune responses in vivo. Nature Med. 3, 625– 631 (1997).

    Article  CAS  Google Scholar 

  32. Lyman, S.D. & Jacobsen, S.E.W. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91, 1101–1107 ( 1998).

    CAS  PubMed  Google Scholar 

  33. Gismondi, A. et al. Human natural killer cells express VLA-4 and VLA-5, which mediate their adhesion to fibronectin. J. Immunol. 146, 384–392 (1991).

    CAS  PubMed  Google Scholar 

  34. Allavena, P. et al. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur. J. Immunol. 24, 3233–3236 (1994).

    Article  CAS  Google Scholar 

  35. Medzhitov, R. & Janeway Jr, C.A. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol. 9, 4–9 (1997).

    Article  CAS  Google Scholar 

  36. Chen, J. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl. Acad. Sci. USA 90, 4528–4532 (1993).

    Article  CAS  Google Scholar 

  37. Müller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918– 1921 (1994).

    Article  Google Scholar 

  38. Cobbold, S.P., Jayasuriya, A., Nash, A., Prospero, T.D. & Waldmann, H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312, 548–551 (1984).

    Article  CAS  Google Scholar 

  39. Wysocka, M. et al. Interleukin-12 is required for interferon-γ production and lethality in lipopolysaccharide-induced shock in mice. Eur. J. Immunol. 25, 672–676 (1995).

    Article  CAS  Google Scholar 

  40. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. 4, 594–600 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the Animal Facility of IGR. We thank C. Maliszewski, C. Bonnerot, S. Amigorena, F. Faure and E. Vivier for critical review of the manuscript. We are also indebted to M. Rescigno for contribution with the R1-conditioned medium and to P. Bousso for his input in flow cytometry analyses. E. Mottez is acknowledged for the generation of the P815-B7.1 cell line. This work was supported by the Association pour la Recherche sur le Cancer, the Ligue Nationale de Lutte contre le Cancer, the GEFLUC association, programme "Immunité Antitumorale", the Institut Gustave Roussy, CRC IGR number 97.1, and by CNRS. NF was supported by the Institut de Formation Supérieure Biomédicale, the Fondation pour la Recherche Médicale and Rhône Poulenc RORER. AL was supported by CRC IGR number 97.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Zitvogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, N., Lozier, A., Flament, C. et al. Dendritic cells directly trigger NK cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5, 405–411 (1999). https://doi.org/10.1038/7403

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing