Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

NOS: Modulator, not mediator of cardiac performance

Abstract

The 'endothelial' isoform of nitric oxide synthase modulates (but is not obligatory for) cardiac muscle function; signaling by NO in different cellular compartments coordinates diverse effects within the cardiac myocyte (pages 331–334).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Xu, K.Y., Huso, D.L., Dawson, T., Bredt, D.S. & Becker, L.C. NO synthase in cardiac sarcoplasmic reticulum. Proc. Natl. Acad.Sci.USA 96, 657–662 (1999).

    Article  CAS  Google Scholar 

  2. Balligand, J.-L. et al. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J. Biol. Chem. 270, 14582 –14586 (1995).

    Article  CAS  Google Scholar 

  3. Feron, O. et al. Modulation of endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. J. Biol. Chem. 273, 30249–30254 (1998).

    Article  CAS  Google Scholar 

  4. Bates, T.E., Loesch, A., Burnstock, G. & Clark, J.B. Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphorylation? Biochem. Biophys. Res. Comm. 218, 40– 44 (1996).

    Article  CAS  Google Scholar 

  5. Balligand, J.-L. et al. Cytokine-inducible nitric-oxide synthase (iNOS) expression in cardiac myocytes: Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J. Biol. Chem. 269, 27580–27588 (1994).

    CAS  PubMed  Google Scholar 

  6. Hare, J.M., Givertz, M.M., Creager, M.A. & Colucci, W.S. Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: Potentiation of β-adrenergic inotropic responsiveness. Circulation 97, 161–166 (1998).

    Article  CAS  Google Scholar 

  7. Hare, J.M. et al. Pertussis toxin-sensitive G proteins influence nitric oxide synthase III activity and protein levels in rat heart. J. Clin. Invest. 101, 1424–1431 ( 1998).

    Article  CAS  Google Scholar 

  8. Paulus, W.J., Vantrimpont, P.J. & Shah, A.M. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Circulation 89, 2070–2078 ( 1994).

    Article  CAS  Google Scholar 

  9. Suto, N. et al. Nitric oxide modulates cardiac contractility and oxygen consumption without changing contractile efficiency. Am. J. Physiol. 275, H41–H49 (1998).

    CAS  PubMed  Google Scholar 

  10. Vandecasteele, G. et al. Muscarinic and β-adrenergic regulation of heart rate, force of contraction and Ca2+ current is preserved in mice lacking endothelial nitric oxide synthase. Nature Med. 5, 331–334 (1999).

    Article  CAS  Google Scholar 

  11. Campbell, D.L., Stamler, J.S. & Strauss, H.C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J. Gen. Physiol. 108, 277– 293 (1996).

    Article  CAS  Google Scholar 

  12. Xu, L., Eu, J.P., Meissner, G. & Stamler, J.S. Activation of the cardiac calcium release channel (Ryanodine receptor) by Poly-S-Nitrosylation. Science 279, 234-237 (1998).

    Article  CAS  Google Scholar 

  13. Han, X. et al. Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 95, 6510–6515 (1998).

    Article  CAS  Google Scholar 

  14. Pfeifer, A. et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 17, 3045– 3051 (1998).

    Article  CAS  Google Scholar 

  15. Motterlini, R. et al. Heme oxygenase-1-derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo. Circ. Res. 83, 568–577 ( 1998).

    Article  CAS  Google Scholar 

  16. Meng, W., Ayata, C., Waeber, C., Huang, P.L. & Moskowitz, M.A. Neuronal NOS-cGMP-dependent ACh-induced relaxation in pial arterioles of endothelial NOS knockout mice. Am. J. Physiol. 274, H411–H415 ( 1998).

    CAS  PubMed  Google Scholar 

  17. Pinsky, D. et al. Mechanical transduction of nitric oxide synthesis in the beating heart. Circ. Res. 81, 372– 379 (1997).

    Article  CAS  Google Scholar 

  18. Zaragoza, C., Ocampo, C.J., Saura, M., McMillan, A. & Lowenstein, C.J. Nitric oxide inhibition of Coxsackievirus replication in vitro. J. Clin. Invest. 100, 1760 –1767 (1997).

    Article  CAS  Google Scholar 

  19. Haywood, G.A. et al. Expression of inducible nitric oxide synthase in human heart failure. Circulation 93, 1087– 1094 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, J., Stamler, J. NOS: Modulator, not mediator of cardiac performance. Nat Med 5, 273–274 (1999). https://doi.org/10.1038/6486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/6486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing