Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death

Abstract

Repression of cell cycle progression by tumor suppressors might provide a means for tumor therapy. Here we demonstrate that ectopic overexpression of the p16INK4/CDKN2 tumor suppressor from an adenovirus vector in various cell lines results in block of cell division and, subsequently, in a gradual reduction of the levels of the product of retinoblastoma susceptibility gene, pRb. Overexpression of p53 and p16INK4/CDKN2, but not p53 on its own, induces apoptotic death only in tumor cells. Simultaneous adenoviral transfer of p16 and p53 genes leads to inhibition of tumor growth in nude mice. These results suggest that combined delivery of two cooperating genes like p16 and p53 could be the basis for the development of a new strategy for cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rosenberg, S.A. et ai. Immunization of cancer patients using autologous cancer Cells modified by insertion of the gene for interleukin-2. Hum. Gene Ther. 3, 75–90 (1992).

    Article  Google Scholar 

  2. Culver, K.W. et al. In vivo gene transfer with retroviral vector producer Cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y. et al. Retroviral vector-mediated transduction of K-ras antisense RNA into human cancer Cells inhibits expression of the malignant phenotype. Hum. Gene Ther. 4, 451–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Friedmann, T. Gene therapy of cancer through restoration of tumor-suppressor functions? Cancer 70 (Suppl.), 1810–1817 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Mulligan, R.C. The basic science of gene therapy. Science 260, 926–932 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Kremer, E.J. & Perricaudet, M. Adenovirus and adeno-associated virus mediated gene transfer. British Med. Bull. 51, 31–44 (1995).

    Article  CAS  Google Scholar 

  7. Kozarsky, K.F. & Wilson, J.M. Gene therapy: Adenovirus vectors. Curr. Opin. Cen. Dev. 3, 499–503 (1993).

    Article  CAS  Google Scholar 

  8. Kass-Eisler, A. et al. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Therapy 1, 395–402 (1994).

    CAS  PubMed  Google Scholar 

  9. Huard, J. et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Therapy 2, 107–115 (1995).

    CAS  PubMed  Google Scholar 

  10. Herz, J. & Gerard, R.D. Adenovirus-mediated low-density-lipoprotein receptor gene transfer accelerated cholesterol clearance in normal mice. Proc. Natl. Acad. Sd. USA 90, 2812–281 6 (1993).

    Article  CAS  Google Scholar 

  11. Liu, T.-J. et al. Growth suppression of human head and neck cancer Cells by the introduction of a wild-type pS3 gene via a recombinant adenovirus. Cancer Res. 54, 3662–3667 (1994).

    CAS  PubMed  Google Scholar 

  12. Zhang, W.-W. et al. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer Cells mediated by recombinant adenovirus. Cancer Gene Ther. 1, 1–10 (1994).

    Google Scholar 

  13. Clayman, G.L. et al. In vivo molecular therapy with p53 adenovirus for micror scopic residual head and neck squamous carcinoma. Cancer Res. 55, 1–6 (1995).

    CAS  PubMed  Google Scholar 

  14. Weinberg, R.A. The retinoblastoma protein and Cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Strauss, M., Lukas, J. & Bartek, J., Unrestricted Cell cycling and cancer. Nature Med. 1, 1245–1246 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Sheer, C.J. & Roberts, J.M. Inhibitors of mammalian Gl cyclin-dependent ki-nases. Genes Dev. 9, 1149–1163 (1995).

    Article  Google Scholar 

  17. He, A. et al. CDK4 amplification is an alternative mechanism to p16 gene ho-mozygous deletion in glioma Cell lines. Cancer Res. 54, 5804–5807 (1994).

    CAS  PubMed  Google Scholar 

  18. Motukura, T. & Arnold, A. Cyclins and oncogenesis. Biochem. Biophys. Acta 1155, 63–78 (1993).

    Google Scholar 

  19. Bates, S. & Peters, G. Cyclin D1 as a Cellular protooncogene. Sem. Cancer Biol. 6, 73–82 (1995).

    Article  CAS  Google Scholar 

  20. Kamb, A. et al. A Cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancer. Nature 368, 753–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Merlo, A. et al. 5'CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN/MTS1 in human cancers. Nature Med. 1, 686–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Ottersen, G.A., Kratzke, T.A., Coxon, A., Kim, Y.W. & Kaye, F.J. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wild-type RB. Oncogene 9 3375–378 (1994).

    Google Scholar 

  24. Okamoto, A. et al. Mutations and altered expression of p16INK4 in human cancer. Proc. Natl. Acad. Sd. USA 91, 11045–1049 (1994).

    Article  CAS  Google Scholar 

  25. Aagaard, L. et al. Aberrations of p16INK4 and retinoblastoma tumor-suppressor genes occur in distinct sub-sets of human cancer Cell lines. Intl. J. Cancer 61, 115–20 (1995).

    Article  CAS  Google Scholar 

  26. Elledge, S.J. et al. The p21 cdk-interacting protein cip1 is potent inhibitor of Gl cyclin-dependent kinases. Cell 75, 805–816 (1993)

    Article  PubMed  Google Scholar 

  27. Xiong, Y. et al. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701–704 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Deng, C., Zhang, P., Harer, W.J., Elledge, S.J., & Leder, P., Mice lacking P21CIPI/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Jin, X., Nguyen, D., Zhang, W.-W., Kyritsis, A.P. & Roth, J.A. Cell cycle arrest and inhibition of tumor Cell proliferation by the p16INK4 gene mediated by an adenovirus vector. Cancer Res. 55, 3250–3252 (1995).

    CAS  PubMed  Google Scholar 

  30. Yang, Z.-Y., Perkins, N.D., Ohno, T., Nabel, E.G. & Nabel, G.J. The p21 cyclindependent kinase inhibitor suppresses tumorigenicity in vivo. Nature Med. 1, 1052–1056 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Eastham, J.A. et al. In vivo gene therapy with p53 or p21 and adenovirus for prostate cancer. Cancer Res. 55, 5151–5155 (1995).

    CAS  PubMed  Google Scholar 

  32. Rowan, S. et al. Specific loss of apoptotic but not Cell cycle arrest function in a human tumour derived p53 mutant. EMBO J. 15, 827–838 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White, E., ife, death, and the pursuit of apoptosis. Genes Dev. 10, 1–15 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Roth, J.A. et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med. 2, 985–991 (1996)

    Article  CAS  PubMed  Google Scholar 

  35. Haas-Kogan, D.A. et al. Inhibition of apoptosis by the retinoblastoma gene product. EMB0 J. 14, 461–72 (1995).

    Article  CAS  Google Scholar 

  36. Lukas, J. et al. Retinoblastoma-protein-dependent Cell-cycle inhibition by the tumour suppressor p16. Nature 375, 503–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Bates, S. & Vousden, K.H. . p53 in signaling checkpoint arrest or apoptosis. Curr. Opin. Cenet. Dev. 6, 12–19 (1996).

    Article  CAS  Google Scholar 

  38. Gill, R.M. et al. Characterization of the human RBI promoter and of elements involved in transcriptional regulation. Cell Growth Diff. 5, 467–474 (1994).

    CAS  PubMed  Google Scholar 

  39. An, B. & Dou, Q.P. Cleavage of retinoblastoma protein during apoptosis: An interleukin 1β-converting enzyme-like protease as candidate. Cancer Res. 56, 438–442 (1996).

    CAS  PubMed  Google Scholar 

  40. Nevins, J.R. E2F: A link between the Rb tumor suppressor protein and viral onco-proteins. Science 258, 424–428 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Qin, X.-Q., Livingston, D.M., Kaelin, W.G. & Adams, P.D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Notl. Acad. Sci. USA 91, 10918–10922 (1994).

    Article  CAS  Google Scholar 

  42. Shan, B. & Lee, W.H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell Biol. 14, 8166–8173 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, X. & Levine, A.J. . p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl. Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oltvai, Z.N., Miliman, C.L. & Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed Cell death. Cell 74, 609–619 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Miyashita, T. & Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human box gene. Cell 80, 293–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, C., Cirielli, C., Capogrossi, M.C. & Passaniti, A. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor Cells. Cancer Res. 55, 4210–4213 (1995).

    CAS  PubMed  Google Scholar 

  47. Bett, A.J., Haddara, W., Prevec, L. & Graham, F.L. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc. Natl. Acad. Sci. USA 91, 8802–8806 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGrory, W.J., Bautista, D.S. & Graham, F.L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163, 614–617 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Lieber, A., Sandig, V., Sommer, W., Bähring, S. & Strauss, M. Stable high-level gene expression in mammalian Cells by T7phage RNA polymerase. In Recombinant DNA Methodology II (ed. Wu, R.) 257–276 (Selected Meth. Enzymol., Academic Press, 1995).

    Chapter  Google Scholar 

  50. Kanegae, Y., Makimura, M. & Saito, I. A simple and efficient method for purification of infectious recombinant adenovirus. Jpn. J. Med. Sci. Biol. 47, 157–166 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Carlsson, G., Gullberg, B. & Hafström, L. Estimation of liver tumor volume using different formulas — an experimental study in rats. J. Cancer Res. Clin. Oncol. 105, 20–23 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandig, V., Brand, K., Herwig, S. et al. Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med 3, 313–319 (1997). https://doi.org/10.1038/nm0397-313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0397-313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing