Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local adenoviral–mediated expression of recombinant hirudin reduces neointima formation after arterial injury

Abstract

Catalytically active thrombin, acting locally, is thought to mediate neointima formation after arterial injury. We constructed an adenovirus vector, AdHV–1.2, containing a complementary DNA for the thrombin inhibitor hirudin. AdHV–1.2 directed the synthesis and secretion of biologically active hirudin from vascular cells in vitro. In vivo gene transfer of hirudin into smooth muscle cells of injured rat carotid arteries resulted in peak secretion of at least 34 ± 23 pg hirudin per vessel per 24 hours, and resulted in a significant (P < 0.05) 35% reduction in neointima formation. Systemic partial thromboplastin times were not affected by local hirudin expression. These results support the hypothesis that local thrombin activity contributes to neointima formation after arterial injury and suggest that local delivery of a highly specific antithrombin may constitute an effective intervention for arterial proliferative disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fuster, V., Badimon, L., Badimon, J.J. & Chesebro, J.H. The pathogenesis of coronary artery disease and the acute coronary syndromes (second of two parts). N. Engl. J. Med. 326, 310–318 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Blombäck, B. Studies on the action of thrombic enzymes on bovine fibrinogen as measured by N-terminal analysis. Arkiv. Kemi. 12, 321–335 (1958).

    Google Scholar 

  3. Davey, M.G. & Lüscher, E.F. Actions of thrombin and other coagulant and pro-teolytic enzymes on blood platelets. Nature 216, 857–858 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. McNamara, C.A. et al. Thrombin stimulates proliferation of cultured rat aortic smooth muscle Cells by a proteolytically activated receptor. J. Clin. Invest. 91, 94–98 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Markwardt, F. Hirudin as an inhibitor of thrombin. Methods Enzymol. 19, 924–932 (1970).

    Article  Google Scholar 

  6. Just, M., Tripier, D. & Seiffge, D. Antithrombotic effects of recombinant hirudin in different animal models. Haemostasis 21 (Suppl. 1), 80–87 (1991).

    CAS  PubMed  Google Scholar 

  7. Sarembock, I.J. et al. Effectiveness of recombinant desulphatohirudin in reducing restenosis after balloon angioplasty of atherosclerotic femoral arteries in rabbits. Circulation 84, 232–243 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Topol, E.J. et al. Recombinant hirudin for unstable angina pectoris: A multicenter, randomized angiographic trial. Circulation 89, 1557–1566 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Serruys, P.W. et al. A comparison of hirudin with heparin in the prevention of restenosis after coronary angioplasty. N. Engl. J. Med. 333, 757–763 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. van den Bos, A.A. et al. Safety and efficacy of recombinant hirudin (CGP 39 393) versus heparin in patients with stable angina undergoing coronary angioplasty. Circulation 88, 2058–2066 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) Ha Investigators. Randomized trial of intravenous heparin versus recombinant hirudin for acute coronary syndromes. Circulation 90, 1631–1637 (1994).

  12. Wallace, A., Dennis, S., Hofsteenge, J. & Stone, S.R. Contribution of the N-terminal region of hirudin to its interaction with thrombin. Biochemistry 28, 10079–10084 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Schulick, A.H., Dong, G., Newman, K.D., Virmani, R. & Dichek, D.A. Endothelium-specific in vivo gene transfer. Circ. Res. 77, 475–485 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Schulick, A.H., Newman, K.D., Virmani, R. & Dichek, D.A. In vivo gene transfer into injured carotid arteries. Optimization and evaluation of acute toxicity. Circulation 91, 2407–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Hatton, M.W.C. & Ross-Ouellet, B. Radiolabeled r-hirudin as a measure of thrombin activity at, or within, the rabbit aorta wall in vitro and in vivo. Thromb. Haemost. 71, 499–506 (1994).

    CAS  PubMed  Google Scholar 

  16. Strauss, B.H., van der Giessen, W.J., & Verdouw, P.D., Hirudin and restenosis [Letter to the Editor]. Circulation 85, 1952–1953 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Benezra, M., Vlodavsky, I., Ishai-Michaeli, R., Neufeld, G. & Bar-Shavit, R. Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extra cellular matrix. Blood 81, 3324–3331 (1993).

    CAS  PubMed  Google Scholar 

  18. Okazaki, H., Majesky, M.W., Marker, L.A. & Schwartz, S.M. Regulation of platelet-derived growth factor ligand and receptor gene expression by a-thrombin in vascular smooth muscle Cells. Circ. Res. 71, 1285–1293 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Nelken, N.A. et al. Thrombin receptor expression in normal and atherosclerotic human arteries. J. Clin. Invest. 90, 1614–1621 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohno, T. et al. Gene therapy for vascular smooth muscle Cell proliferation after arterial injury. Science 265, 781–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Guzman, R.J. et al. In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinasegene. Proc. Natl. Acad. Sci. USA 91, 10732–10736 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang, M.W. et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267, 518–522 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. von der Leyen, H.E. et al. Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. Proc. Natl. Acad. Sci. USA 92, 1137–1141 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Indolfi, C. et al. Inhibition of Cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nature Med. 1, 541–545 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. The Multicenter European Research Trial with Cilazapril after Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MERCATOR) Study Group. Does the new angiotensin converting enzyme inhibitor cilaza-pril prevent restenosis after percutaneous transluminal coronary angioplasty? Results of the MERCATOR study: A multicenter, randomized, double-blind placebo-controlled trial. Circulation 86, 100–110 (1992).

  26. Yang, Y., Li, Q., Ertl, H.C.J. & Wilson, J.M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Newman, K.D. et al. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J. Clin. Invest. 96, 2955–2965 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Clowes, A.W. & Karnovsky, M.J. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265, 625–626 (1977).

    Article  CAS  PubMed  Google Scholar 

  29. Guyton, J.R., Rosenberg, R.D., Clowes, A.W. & Karnovsky, M.J. Inhibition of rat arterial smooth muscle Cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circ. Res. 46, 625–634 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Fortkamp, E., Rieger, M., Heisterberg-Moutses, G., Schweitzer, S. & Sommer, R. Cloning and expression in Escherichia coli of a synthetic DNA for hirudin, the blood coagulation inhibitor in the leech. DNA 5, 511–517 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Dillon, P.J. & Rosen, C.A. A rapid method for the construction of synthetic genes using the polymerase chain reaction. BioTechniques 9, 298–300 (1990).

    CAS  PubMed  Google Scholar 

  32. Lee, S.W., Trapnell, B.C., Rade, J.J., Virmani, R. & Dichek, D.A. In vivo adenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ. Res. 73, 797–807 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Graham, F.L. & Prevec, L. Manipulation of adenovirus vectors. Methods Mol. Biol. 7, 109–128 (1991).

    CAS  PubMed  Google Scholar 

  34. Spannagl, M., Bichler, H., Lill, H. & Schramm, W. A fast photometric assay for the determination of hirudin. Haemostasis 21 (Suppl. 1), 36–40 (1991).

    CAS  PubMed  Google Scholar 

  35. Walsmann, P. Isolation and characterization of hirudin from Hirudo medicinalis. Semin. Thromb. Hemost. 17, 83–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, P.H. et al. Structure-function and refolding studies of the thrombin-specific inhibitor hirudin. Haemostasis 21 (Suppl. 1), 41–48 (1991).

    CAS  PubMed  Google Scholar 

  37. Daniel, W.W. Biostatistics: A Foundation for Analysis in the Health Sciences, 5th edn. (Wiley, New York, 1991).

    Google Scholar 

  38. Eccleston, E. Normal haematological values in rats, mice and marmosets. in Comparative Clinical Haematology (eds. Archer, R.K. & Jeffcott, L.B.), 611–619 (Blackwell Scientific, Oxford, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rade, J., Schulick, A., Virmani, R. et al. Local adenoviral–mediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat Med 2, 293–298 (1996). https://doi.org/10.1038/nm0396-293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0396-293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing