Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

A partnership that delivers

Abstract

Alzheimer disease mutations in the presenilins alter the intracellular trafficking of β–catenin, hinting that the presenilins may also determine the fate of other proteins in the endoplasmic reticulum (pages 164–169).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Levitan, D. & Greenwald, I. Facilitation of lin 12–mediated signalling by sel–12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351– 354 (1995).

    Article  CAS  Google Scholar 

  2. Zhou, J. et al. Presenilin 1 interacts in brain with a novel member of the armadillo family. Neuroreport 8, 1489– 1494 (1997).

    Article  CAS  Google Scholar 

  3. Yu, G. et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta–catenin. J. Biol. Chem. 273, 16470–16475 (1998).

    Article  CAS  Google Scholar 

  4. Wong, P. et al. Presenilin 1 is required for Notch 1 and Dll 1 expression in the paraxial mesoderm. Nature 387, 288– 292 (1997).

    Article  CAS  Google Scholar 

  5. Nishimura, M. et al. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of β–catenin—a component of the presenilin protein complex. Nature Med. 5, 164–169 (1999).

    Article  CAS  Google Scholar 

  6. Wu, G., Hubbard, E.J.A., Kitajewski, J.K. & Greenwald, I. Evidence for functional and physical association between Caenorhabditis elegans SEL–10, a Cdc4p–related protein, and SEL–12 presenilin. Proc. Natl. Acad. Sci. USA 95, 15787–15791 (1998).

    Article  CAS  Google Scholar 

  7. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F– box/WD40–repeat protein Slimb. Nature 391, 493–496 (1998).

    Article  CAS  Google Scholar 

  8. Hinck, L., Nathke, I.S., Papkoff, J. & Nelson, W.J. Dynamics of cadherin/catenin complex formation: Novel protein interactions and pathways of complex assembly. J. Cell. Biol. 125, 1327–1340 (1994).

    Article  CAS  Google Scholar 

  9. Noll, E. et al. Wnt meeting. Abstr. p.79 (Harvard University, Cambridge MA, 1998).

    Google Scholar 

  10. Hardy, J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20, 154–159 (1997).

    Article  CAS  Google Scholar 

  11. DeStrooper, B. et al. Deficiency of presenilin–1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998).

    Article  CAS  Google Scholar 

  12. Lee, S.J. et al. A detergent–insoluble membrane compartment contains Aβ in vivo. Nature Med. 4, 730–734 (1998).

    Article  CAS  Google Scholar 

  13. Levitan, D. & Greenwald, I. Effects of SEL–12 presenilin on LIN–12 localization and function in Caenorhabditis elegans. Development 125, 3599– 3606 (1998).

    CAS  PubMed  Google Scholar 

  14. Huber, A.H., Nelson, W.J. & Weis, W.I. Three–dimensional structure of the armadillo repeat region of beta–catenin. Cell 90, 871–882 (1997).

    Article  CAS  Google Scholar 

  15. Cruts, M. & Van Broeckhoven, C. Presenilin mutations in Alzheimer's disease. Hum. Mutat. 11, 183–190 (1998).

    Article  CAS  Google Scholar 

  16. Zhang, Z. et al. Destabilization of β–catenin by mutations in presenilin–1 potentiates neuronal apoptosis. Nature 395, 698–702 (1998).

    Article  CAS  Google Scholar 

  17. Tesco, G., Kim, T.W., Diehlmann, A., Beyreuther, K. & Tanzi, R.E. Abrogation of the presenilin 1/beta–catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation. J. Biol. Chem. 273, 33909–33914 (1998).

    Article  CAS  Google Scholar 

  18. Zheng–Fischhofer, Q. et al. Sequential phosphorylation of Tau by glycogen synthase kinase–3 beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer–specific epitope of antibody AT100 and requires a paired–helical–filament–like conformation. Eur. J. Biochem. 252, 542– 552 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosik, K. A partnership that delivers. Nat Med 5, 149–150 (1999). https://doi.org/10.1038/5510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/5510

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing