Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of specific transplantation tolerance across xenogeneic barriers in the T-independent immune compartment

Abstract

After transplantation of primarily vascularized xenografts (Xgs), T-independent mechanisms may lead to Xg rejection before T-cell activation even takes place. The possibility of achieving T-independent xenotolerance was evaluated in nude rats that normally reject hamster cardiac Xgs within 4 days by non-T cell-mediated mechanisms. After donor antigen infusion, temporary NK-cell depletion and a 4-week administration of Leflunomide, hamster heart grafts survived even after withdrawal of immunosuppression. Tolerant rats accepted second hamster hearts, but promptly rejected mouse heart Xgs. In vivo immunization and in vitro cy-totoxicity assays indicated that this species-specific tolerance was based on B-lymphocyte and NK-cell tolerance respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perper, R.J. & Najarian, J.S. Experimental renal heterotransplantation. I. In widely divergent species. Transplantation 4, 377–388 (1966).

    Article  CAS  Google Scholar 

  2. Giles, G.R. et al. Mechanism and modification of rejection of heterografts between divergent species. Transplant Proc. 2, 522–538 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kakita, A., Blanchard, J. & Fortner, J.G. Hamster-to-rat cardiac xenografts: A useful model for transplantation studies. J. Surg. Res. 19, 99–106 (1975).

    Article  CAS  Google Scholar 

  4. Homan, W.P., Williams, K.A., Fabre, J.W., Millad, P.R. & Morris, P.J. Prolongation of cardiac xenograft survival in rats receiving cyclosporine A. Transplantation 31, 164–166 (1981).

    Article  CAS  Google Scholar 

  5. Platt, J.L. et al. The role of natural antibodies in the activation of xenogeneic endothelial cells. Transplantation 52, 1037–1043 (1991).

    Article  CAS  Google Scholar 

  6. Bach, F.H. et al. Endothelial cell activation and thromboregulation during xenograft rejection. Immunol. Rev. 141, 5–30 (1994).

    Article  CAS  Google Scholar 

  7. Leventhal, J.R. et al. Prolongation of cardiac xenograft survival by depletion of complement. Transplantation 55, 857–865 (1993).

    Article  CAS  Google Scholar 

  8. Hancock, W.W., Blakely, M.L., van der Werf, W.J. & Bach, F.H. Rejection of guinea pig cardiac xenografts post-cobra venom factor therapy is associated with infiltration by mononuclear cells secreting IFN-y and diffuse endothelial activation. Transplant. Proc. 25, 2932 (1993).

    CAS  PubMed  Google Scholar 

  9. Auchincloss, H., Jr. Xenogeneic transplantation. Transplantation 46, 1–20 (1988).

    Article  Google Scholar 

  10. Sachs, D.H. & Bach, F.H. Immunology of xenograft rejection. Hum. Immunol. 28, 245–251 (1990).

    Article  CAS  Google Scholar 

  11. Sykes, M., Lee, L.A. & Sachs, DH. Xenograft tolerance. Immunol. Rev. 141, 245–276 (1994).

    Article  CAS  Google Scholar 

  12. Faustman, D. & Coe, C. Prevention of xenograft rejection by masking donor HLA class I antigens. Science 252, 1700–1702 (1991).

    Article  CAS  Google Scholar 

  13. Pierson, R.N., Winn, H.J., Russel, P.S. & Auchincloss, H., Jr. Xenogeneic skin graft rejection is especially dependent on CD4+ T cells. J. Exp. Med. 170, 991–996 (1989).

    Article  Google Scholar 

  14. Platt, J.L. et al. Transplantation of discordant xenografts: A review of progress. Immunol. Today 11, 450–456 (1990).

    Article  CAS  Google Scholar 

  15. Bach, F.H. et al. Accommodation of vascularized xenografts: Expression of ‘protective genes’ by donor endothelial cells in a host Th2 cytokine environment. Nature Med. 3, 196–204 (1997).

    Article  CAS  Google Scholar 

  16. Zhao, Y., et al. Skin graft tolerance across a discordant xenogeneic barrier. Nature Med. 2, 1211–1216 (1996).

    Article  CAS  Google Scholar 

  17. Goodman, D.J., von Albertini, M., Willson, A., Millan, M.T. & Bach, F.H. Direct activation of porcine endothelial cells by human killer cells. Transplantation 61, 763–771 (1996).

    Article  CAS  Google Scholar 

  18. Candinas, D. et al. T-cell independence of macrophage and NK cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection. Transplantation 62, 1920–1927 (1996).

    Article  CAS  Google Scholar 

  19. Lin, Y., Vandeputte, M. & Waer, M. NK cell- and macrophage-mediated rejection of concordant xenografts in the absence of T- and B-cell responses. J. Immunol. 158, 5658–5667 (1997).

    CAS  PubMed  Google Scholar 

  20. Roder, J.C. & Ahrlund-Richer, L. Target-effector interaction in the human and murine natural killer system: Specific and xenogeneic reactivity of the solubilized natural killer-target structure complex and its loss in a somatic cell hybrid. J. Exp. Med. 150, 471–481 (1979).

    Article  CAS  Google Scholar 

  21. Roozemond, R.C., Das, P.K. & Halperin, M. Effect of mycobacterial lipids on membrane fluidity and natural killer cell-mediated cytotoxicity. Ann. Immunol. (Paris) 1350, 247–255 (1984).

    Google Scholar 

  22. Zinkemagel, R.M.T. T and B cell tolerance and responses to viral antigens in trans-genic mice: Implications for the pathogenesis of autoimmune versus im-munopathological disease. Immunol. Rev. 122, 133–171 (1991).

    Article  Google Scholar 

  23. Sundstrom, J.B. & Cherniak, R. T-cell-dependent and T-cell-independent mechanism of tolerance to glucuronoxylomannan of Cryptococcus neoformans serotype A. Infect Immun. 61, 1340–1345 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodnow, C.C. Transgeneic mice and analysis of B cell tolerance. Annu. Rev. Immunol. 10, 489–518 (1992).

    Article  CAS  Google Scholar 

  25. Sharabi, Y., Aksentijevich, I., Sundt, T.M., III, Sachs, D.H. & Sykes, M. Specific induction of across a xenogeneic barrier: Production of mixed rat/mouse lymphohe-matopoietic chimeras using a nonlethal preparative regimen. J. Exp. Med. 172, 195–202 (1990).

    Article  CAS  Google Scholar 

  26. Chan, E.Y. & MacLennan, I.C. Only a small proportion of splenic B cells in adults are short-lived virgin cells. Eur. J. Immunol. 23, 357–363 (1993).

    Article  CAS  Google Scholar 

  27. Collins, B.H., Parker, W.R. & Platt, J.L. Characterization of porcine endothelial cell determinants recognized by human natural antibodies. Xenotransplantation 1, 36 (1994).

    Article  Google Scholar 

  28. Platt, J.L., Lindman, B.J., Chen, H., Spitalnik, S.L. & Bach, F.H. Endothelial cell antigens recognized by xenoreactive human natural antibodies. Transplantation 50, 817–822 (1990).

    Article  CAS  Google Scholar 

  29. Cramer, D.V., Wu, C.D., Chapman, F.A. & Makowka, L. Humoral responses to xenografts: Do concordant and discordant reactions share common immune responses? Transplant. Proc. 29, 945 (1997).

    Article  CAS  Google Scholar 

  30. Gustavsson, ML et al. Anti-carbohydrate antibodies associated with hyperacute rejection in a vascularized mouse heart-to-rat xenotransplantation model. Transplantation 61, 957–963 (1996).

    Article  CAS  Google Scholar 

  31. Schaapherder, A.F., Daha, M.R., Bulte, M.T., Van der Woude, F.J. & Gooszen, H.G. Antibody-dependent cell-mediated cytotoxicity against porcine endothelium induced by a majority of human sera. Transplantation 57, 1376–1382 (1994).

    Article  CAS  Google Scholar 

  32. Bach, H.F. et al. Barriers to xenotransplantation. Nature Med. 1, 869–873 (1995).

    Article  CAS  Google Scholar 

  33. Roder, J.C. & Pross, H.F. The biology of human natural killer cell. J. Gin. Immunol. 2, 249–263 (1982).

    Article  CAS  Google Scholar 

  34. Kiyohara, T., Dennis, J.W. & Roder, J.C. Double restriction in NK cell recognition is linked to transmethylation and can be triggered by asparagine-linked oligosaccha-rides on tumor cells. Cell. Immunol. 106, 223–233 (1987).

    Article  CAS  Google Scholar 

  35. Rooney, C.M. & Munro, A.J. NK cells can recognize asialylated autologous lymphocytes and ABO-mismatched lymphocytes. Immunology 51, 193–199 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ljunggren, H.G. & Karre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1991).

    Article  Google Scholar 

  37. Galili, U. Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: A major obstacle for xenotransplantation in humans. Immunol. Today 14, 480–482 (1993).

    Article  CAS  Google Scholar 

  38. Moller, J.R. et al. Natural killer cell recognition of target cells expressing different antigens of vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 82, 2456–2459 (1985).

    Article  CAS  Google Scholar 

  39. Malnati, M.S. et al. Recognition of virus-infected cells by natural killer cell clones is controlled by polymorphic target cell elements. J. Exp. Med. 178, 961–969 (1993).

    Article  CAS  Google Scholar 

  40. Wu, M.F. & Raulet, D.H. Class-I-deficient hemopoietic cells and non hemopoietic cells dominantly induce unresponsiveness of natural killer cells to class-I deficient bone marrow cell grafts. J. Immunol. 158, 1628–1633 (1997).

    CAS  PubMed  Google Scholar 

  41. Umesue, M. et al. Donor-specific prolongation of rat skin graft survival induced by rat-donor cells and cyclophosphamide under co-administration of monoclonal antibodies against T cell receptor alpha beta and natural killer cells in mice. Transplantation 61, 116–124 (1996).

    Article  CAS  Google Scholar 

  42. Sykes, M. et al. Hematopoietic cells and radioresistant host elements influence natural killer cell differentiation. J. Exp. Med. 178, 223–229 (1993).

    Article  CAS  Google Scholar 

  43. Silva, H.T., Jr. & Morris, R.E. Leflunomide and malononitriloamide. Med. Sci. 313, 289–301 (1997).

    Google Scholar 

  44. Reynolds, C.W., Timonen, T. & Herberman, R.B. Natural killer cell activity in the rat. I. Isolation and characterization of the effector cells. J. Immunol. 127, 282–287 (1981).

    CAS  PubMed  Google Scholar 

  45. Salam, A. & Waer, M. Graft-versus-host reactivity and graft-versus-leukemia effect in murine allogeneic bone marrow chimeras conditioned with total body irradiation or total lymphoid irradiation. Transplantation 61, 826–830 (1996).

    Article  CAS  Google Scholar 

  46. Kabat, E.A. & Mayer, M.M. Measurement of total haemolytic complement activity, in Experimental Immunochemistry, 2nd edn., p. 149 (Charles C Thomas, Springfield, IL, 1961).

    Google Scholar 

  47. Coligan, J.E., Kruisbeek, A.M., Marguilies, D.H., Shevach, E.M. & Strober, W. Double antibody-sandwich ELISA to detect specific antibodies, in Current Protocols in Immunology, (eds. Coligan, J.E. et al.) 2.1, p. 11 (Wiley & Sons, New York, 1994).

  48. Baker, P.J. Depletion of C6 prevents development of proteinuria in experimental membranous nephropathy in rats. Am. J. Pathol. 135, 185–194 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Goebels, J., Xia, G. et al. Induction of specific transplantation tolerance across xenogeneic barriers in the T-independent immune compartment . Nat Med 4, 173–180 (1998). https://doi.org/10.1038/nm0298-173

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0298-173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing