Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic models for CNS inflammation

Abstract

The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on the autoimmune disease multiple sclerosis, as well as conditions in which an inflammatory response makes a secondary contribution to tissue injury or repair, such as neurodegeneration, ischemia and trauma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The major phases of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS).

Stephen Horwitz

Figure 2: The multiple effects of cytokines in MS and EAE.

Stephen Horwitz

Similar content being viewed by others

References

  1. Owens, T. & Sriram, S. The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis. Neurol. Clin. 13, 51–73 (1995).

    Article  CAS  Google Scholar 

  2. Eynon, E.E. & Flavell, R.A. Walking through the forest of transgenic models of human disease. Immunol. Rev. 169, 5–10 (1999).

    Article  CAS  Google Scholar 

  3. Litzenburger, T. et al. B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J. Exp. Med. 188, 169–80 (1998).

    Article  CAS  Google Scholar 

  4. Hofman, F.M., Hinton, D.R., Johnson, K. & Merrill, J.E. Tumor necrosis factor identified in multiple sclerosis brain. J. Exp. Med. 170, 607–612 (1989).

    Article  CAS  Google Scholar 

  5. Selmaj, K., Raine, C.S., Cannella, B. & Brosnan, C.F. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J. Clin. Invest. 87, 949–954 (1991).

    Article  CAS  Google Scholar 

  6. Issazadeh, S., Ljungdahl, A., Hojeberg, B., Mustafa, M. & Olsson, T. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta. J. Neuroimmunol. 61, 205–212 (1995).

    Article  CAS  Google Scholar 

  7. Okuda, Y. et al. Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J. Neuroimmunol. 62, 103–112 (1995).

    Article  CAS  Google Scholar 

  8. Renno, T., Krakowski, M., Piccirillo, C., Lin, J.Y. & Owens, T. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J. Immunol. 154, 944–953 (1995).

    CAS  Google Scholar 

  9. Taupin, V. et al. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system. Eur. J. Immunol. 27, 905–913 (1997).

    Article  CAS  Google Scholar 

  10. Probert, L. et al. TNF-alpha transgenic and knockout models of CNS inflammation and degeneration. J. Neuroimmunol. 72, 137–141 (1997).

    Article  CAS  Google Scholar 

  11. Stalder, A.K. et al. Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor. Am. J. Pathol. 153, 767–783 (1998).

    Article  CAS  Google Scholar 

  12. Akassoglou, K. et al. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am. J. Pathol. 153, 801–813 (1998).

    Article  CAS  Google Scholar 

  13. Eugster, H.P. et al. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur. J. Immunol. 29, 626–632 (1999).

    Article  CAS  Google Scholar 

  14. Sedgwick, J.D., Riminton, D.S., Cyster, J.G. & Korner, I. Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol. Today 21, 110–113 (2000).

    Article  CAS  Google Scholar 

  15. Bruce, A.J. et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Med. 2, 788–794 (1996).

    Article  CAS  Google Scholar 

  16. Liu, J. et al. TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nature Med. 4, 78–83 (1998).

    Article  CAS  Google Scholar 

  17. Hjelmstrom, P., Juedes, A.E. & Ruddle, N.H. Cytokines and antibodies in myelin oligodendrocyte glycoprotein-induced experimental allergic encephalomyelitis. Res. Immunol. 149, 794–804; 847–848; 855–860 (1998).

    Article  CAS  Google Scholar 

  18. Gregersen, R., Lambertsen, K. & Finsen, B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J. Cereb. Blood Flow Metab. 20, 53–65 (2000).

    Article  CAS  Google Scholar 

  19. Calabresi, P.A., Tranquill, L.R., McFarland, H.F. & Cowan, E.P. Cytokine gene expression in cells derived from CSF of multiple sclerosis patients. J. Neuroimmunol. 89, 198–205 (1998).

    Article  CAS  Google Scholar 

  20. Hofman, F.M., Hinton, D.R., Baemayr, J., Weil, M. & Merrill, J.E. Lymphokines and immunoregulatory molecules in subacute sclerosing panencephalitis. Clin. Immunol. Immunopathol. 58, 331–342 (1991).

    Article  CAS  Google Scholar 

  21. Owens, T., Renno, T., Taupin, V. & Krakowski, M. Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol. Today 15, 566–571 (1994).

    Article  CAS  Google Scholar 

  22. Popko, B., Corbin, J.G., Baerwald, K.D., Dupree, J. & Garcia, A.M. The effects of interferon-gamma on the central nervous system. Mol. Neurobiol. 14, 19–35 (1997).

    Article  CAS  Google Scholar 

  23. Sethna, M.P. & Lampson, L.A. Immune modulation within the brain: recruitment of inflammatory cells and increased major histocompatibility antigen expression following intracerebral injection of interferon-gamma. J. Neuroimmunol. 34, 121–132 (1991).

    Article  CAS  Google Scholar 

  24. Simmons, R.D. & Willenborg, D.O. Direct injection of cytokines into the spinal cord causes autoimmune encephalomyelitis-like inflammation. J. Neurol. Sci. 100, 37–42 (1990).

    Article  CAS  Google Scholar 

  25. Voorthuis, J.A. et al. Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin. Exp. Immunol. 81, 183–188 (1990).

    Article  CAS  Google Scholar 

  26. Corbin, J.G. et al. Targeted CNS expression of interferon-gamma in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol. Cell Neurosci. 7, 354–370 (1996).

    Article  CAS  Google Scholar 

  27. Horwitz, M.S., Evans, C.F., McGavern, D.B., Rodriguez, M. & Oldstone, M.B. Primary demyelination in transgenic mice expressing interferon-gamma. Nature Med. 3, 1037–1041 (1997).

    Article  CAS  Google Scholar 

  28. Renno, T. et al. Interferon-gamma in progression to chronic demyelination and neurological deficit following acute EAE. Mol. Cell Neurosci. 12, 376–389 (1998).

    Article  CAS  Google Scholar 

  29. Jensen, M.B., Hegelund, I.V., Lomholt, N.D., Finsen, B. & Owens, T. IFNγ enhances microglial reactions to hippocampal axonal degeneration. J Neurosci 20, 3612–3621 (2000).

    Article  CAS  Google Scholar 

  30. Horwitz, M.S., Evans, C.F., Klier, F.G. & Oldstone, M.B. Detailed in vivo analysis of interferon-gamma induced major histocompatibility complex expression in the the central nervous system: astrocytes fail to express major histocompatibility complex class I and II molecules. Lab Invest. 79, 235–242 (1999).

    CAS  Google Scholar 

  31. Turnley, A.M. et al. Dysmyelination in transgenic mice resulting from expression of class I histocompatibility molecules in oligodendrocytes. Nature 353, 566–569 (1991).

    Article  CAS  Google Scholar 

  32. Power, C., Kong, P.A. & Trapp, B.D. Major histocompatibility complex class I expression in oligodendrocytes induces hypomyelination in transgenic mice. J. Neurosci. Res. 44, 165–173 (1996).

    Article  CAS  Google Scholar 

  33. Baerwald, K.D., Corbin, J.G. & Popko, B. Major histocompatibility complex heavy chain accumulation in the endoplasmic reticulum of oligodendrocytes results in myelin abnormalities. J. Neurosci. Res 59, 160–169 (2000).

    Article  CAS  Google Scholar 

  34. Pouly, S., Becher, B., Blain, M. & Antel, J.P. Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J. Neuropathol. Exp. Neurol. 59, 280–286 (2000).

    Article  CAS  Google Scholar 

  35. Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. & Ramshaw, I.A. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  Google Scholar 

  36. Tran, E.H., Prince, E.N. & Owens, T. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J. Immunol. 164, 2759–2768 (2000).

    Article  CAS  Google Scholar 

  37. Krakowski, M. & Owens, T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641–1646 (1996).

    Article  CAS  Google Scholar 

  38. Chu, C.Q., Wittmer, S. & Dalton, D.K. Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 123–128 (2000).

    Article  CAS  Google Scholar 

  39. Billiau, A. et al. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immunol. 140, 1506–1510 (1988).

    CAS  Google Scholar 

  40. Duong, T.T., St. Louis, J., Gilbert, J.J., Finkelman, F.D. & Strejan, G.H. Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J. Neuroimmunol. 36, 105–115 (1992).

    Article  CAS  Google Scholar 

  41. Ransohoff, R.M. Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. J. Neuroimmunol. 98, 57–68 (1999).

    Article  CAS  Google Scholar 

  42. Karpus, W.J. et al. An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155, 5003–5010 (1995).

    CAS  Google Scholar 

  43. Youssef, S. et al. Long-lasting protective immunity to experimental autoimmune encephalomyelitis following vaccination with naked DNA encoding C-C chemokines. J. Immunol. 161, 3870–3879 (1998).

    CAS  Google Scholar 

  44. Tani, M. et al. Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N51/KC in oligodendrocytes. J. Clin. Invest. 98, 529–539 (1996).

    Article  CAS  Google Scholar 

  45. Fuentes, M.E. et al. Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J. Immunol. 155, 5769–5776 (1995).

    CAS  Google Scholar 

  46. Fife, B.T., Huffnagle, G.B., Kuziel, W.A. & Karpus, W.J. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 899–906 (2000).

    Article  CAS  Google Scholar 

  47. Tran, E.H., Kuziel, W.A. & Owens, T. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor. Eur. J. Immunol. 30, 1410–1415 (2000).

    Article  CAS  Google Scholar 

  48. Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 161, 3299–3306 (1998).

    CAS  Google Scholar 

  49. Cua, D.J., Groux, H., Hinton, D.R., Stohlman, S.A. & Coffman, R.L. Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 189, 1005–1010 (1999).

    Article  CAS  Google Scholar 

  50. Samoilova, E.B., Horton, J.L. & Chen, Y. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell Immunol. 188, 118–124 (1998).

    Article  CAS  Google Scholar 

  51. Falcone, M., Rajan, A.J., Bloom, B.R. & Brosnan, C.F. A critical role for IL-4 in regulating disease severity in experimental allergic encephalomyelitis as demonstrated in IL-4-deficient C57BL/6 mice and BALB/c mice. J. Immunol. 160, 4822–4830 (1998).

    CAS  Google Scholar 

  52. Genain, C.P. & Zamvil, S.S. Specific immunotherapy: one size does not fit all. Nature Med. 6, 1098–1100 (2000).

    Article  CAS  Google Scholar 

  53. Genain, C.P. et al. Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057 (1996).

    Article  CAS  Google Scholar 

  54. Wyss-Coray, T., Borrow, P., Brooker, M.J. & Mucke, L. Astroglial overproduction of TGF-beta 1 enhances inflammatory central nervous system disease in transgenic mice. J. Neuroimmunol. 77, 45–50 (1997).

    Article  CAS  Google Scholar 

  55. Johns, L.D. & Sriram, S. Experimental allergic encephalomyelitis: neutralizing antibody to TGF beta 1 enhances the clinical severity of the disease. J. Neuroimmunol. 47, 1–7 (1993).

    Article  CAS  Google Scholar 

  56. Racke, M.K. et al. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J. Immunol. 146, 3012–3017 (1991).

    CAS  Google Scholar 

  57. Wyss-Coray, T., Lin, C., Sanan, D.A., Mucke, L. & Masliah, E. Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer's disease-like microvascular degeneration in transgenic mice. Am. J. Pathol. 156, 139–150 (2000).

    Article  CAS  Google Scholar 

  58. Campbell, I.L., Stalder, A.K., Akwa, Y., Pagenstecher, A. & Asensio, V.C. Transgenic models to study the actions of cytokines in the central nervous system. Neuroimmunomodulation 5, 126–135 (1998).

    Article  CAS  Google Scholar 

  59. Furlan, R. et al. Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J. Immunol. 163, 2403–2409 (1999).

    CAS  Google Scholar 

  60. Eugster, H.P., Frei, K., Kopf, M., Lassmann, H. & Fontana, A. IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur. J. Immunol. 28, 2178–2187 (1998).

    Article  CAS  Google Scholar 

  61. Segal, B.M., Dwyer, B.K. & Shevach, E.M. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med. 187, 537–46 (1998).

    Article  CAS  Google Scholar 

  62. Arnason, B.G. Immunologic therapy of multiple sclerosis. Annu. Rev. Med. 50, 291–302 (1999).

    Article  CAS  Google Scholar 

  63. Panitch, H.S., Hirsch, R.L., Schindler, J. & Johnson, K.P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    Article  CAS  Google Scholar 

  64. Bever, C.T., Jr., Panitch, H.S., Levy, H.B., McFarlin, D.E. & Johnson, K.P. Gamma-interferon induction in patients with chronic progressive MS. Neurology 41, 1124–1127 (1991).

    Article  Google Scholar 

  65. Ling, Z.D. et al. Intravenous immunoglobulin induces interferon-gamma and interleukin-6 in vivo. J. Clin. Immunol. 13, 302–309 (1993).

    Article  CAS  Google Scholar 

  66. Selmaj, K.W. & Raine, C.S. Experimental autoimmune encephalomyelitis: immunotherapy with anti-tumor necrosis factor antibodies and soluble tumor necrosis factor receptors. Neurology 45, S44–S49 (1995).

    Article  CAS  Google Scholar 

  67. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 457–465 (1999).

  68. Wiendl, H., Neuhaus, O., Kappos, L. & Hohlfeld, R. [Multiple sclerosis. Current review of failed and discontinued clinical trials of drug treatment]. Nervenarzt. 71, 597–610 (2000).

    Article  CAS  Google Scholar 

  69. Green, E.A. & Flavell, R.A. The temporal importance of TNFα expression in the development of diabetes. Immunity 12, 459–469 (2000).

    Article  CAS  Google Scholar 

  70. Martin, D. & Near, S.L. Protective effect of the interleukin-1 receptor antagonist (IL-1ra) on experimental allergic encephalomyelitis in rats. J. Neuroimmunol. 61, 241–245 (1995).

    Article  CAS  Google Scholar 

  71. Leonard, J.P., Waldburger, K.E. & Goldman, S.J. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med. 181, 381–386 (1995).

    Article  CAS  Google Scholar 

  72. Cash, E. et al. Macrophage-inactivating IL-13 suppresses experimental autoimmune encephalomyelitis in rats. J. Immunol. 153, 4258–4267 (1994).

    CAS  Google Scholar 

  73. Jander, S. & Stoll, G. Differential induction of interleukin-12, interleukin-18, and interleukin-1beta converting enzyme mRNA in experimental autoimmune encephalomyelitis of the Lewis rat. J. Neuroimmunol. 91, 93–99 (1998).

    Article  CAS  Google Scholar 

  74. Wildbaum, G., Youssef, S., Grabie, N. & Karin, N. Neutralizing antibodies to IFN-gamma-inducing factor prevent experimental autoimmune encephalomyelitis. J. Immunol. 161, 6368–6374 (1998).

    CAS  Google Scholar 

  75. Asensio, V.C. et al. C10 is a novel chemokine expressed in experimental inflammatory demyelinating disorders that promotes recruitment of macrophages to the central nervous system. Am. J. Pathol. 154, 1181–1191 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.O. thanks B. Finsen and J. Zimmer for their hospitality while writing this.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Owens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owens, T., Wekerle, H. & Antel, J. Genetic models for CNS inflammation. Nat Med 7, 161–166 (2001). https://doi.org/10.1038/84603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/84603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing