Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF–I system genes and partially restore behavioral function

Abstract

Fetal grafts of normal cerebellar tissue were implanted into the cerebellum of Purkinje cell degeneration mutant mice (pcd/pcd), a model of adult–onset recessively inherited cerebello–olivary atrophy, in an attempt at correcting their cellular and motor impairment. Donor cerebellar cells engrafted in the appropriate sites, as evidenced by the pattern of expression of insulin–like growth factor–1 (IGF–I) system genes. Bilateral cerebellar grafts led to an improvement of motor behaviors in balance rod tests and in the open field, providing evidence for functional integration into the atrophic mouse cerebellum and underscoring the potential of neural transplantation for counteracting the human cerebellar ataxias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harding, A.E. Clinical features and classification of inherited ataxias. in Inherited Ataxias (eds. Harding, A.E. & Deufel, T.) 1–14 (Raven, New York, 1993).

    Google Scholar 

  2. Holmes, G. A form of familial degeneration of the cerebellum.Brain, 30 467–489 (1907).

    Google Scholar 

  3. Poirier, J., Gray, F. & Escourolle, R. Manual of Basic Neuropathology 151–157 (Saunders, Philadelphia, 1990).

    Google Scholar 

  4. Mullen, R.J., Eicher, E.M. & Sidman, R.L. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc. Natl. Acad. Sci. USA 73, 208–212 (1976).

    Article  CAS  Google Scholar 

  5. Landis, S.C. & Mullen, R.J. The development and degeneration of Purkinje cells in fed mutant mice. J. Comf. Neural. 177, 125–144 (1978).

    Article  CAS  Google Scholar 

  6. Ghetti, B. & Triarhou, L.C., Purkinje cell degeneration mutant: A model to study the consequences of neuronal degeneration. in Cerebellar Degenerations: Clinical Neurobiology (ed. Plaitakis, A.) 159–181 (Kluwer Academic, Boston, 1992).

    Chapter  Google Scholar 

  7. Dunnett, S.B. & Bjorklund, A. (eds.) Functional Neural Transplantation (Raven, New York, 1994).

    Google Scholar 

  8. Das, G.D. & Altman, J. Transplanted precursors of nerve cells: Their fate in the cerebella of young rats. Science 173, 637–638 (1971).

    Article  CAS  Google Scholar 

  9. Wells, J. & McAllister, J.P. The development of cerebellar primordia trans-planted to the neocortex of the rat. Dev. Brain Res. 4, 167–179 (1982).

    Article  Google Scholar 

  10. Alvarado-Mallart, R.M. & Sotelo, C. Differentiation of cerebellar anlage hetero-topically transplanted to adult rat brain: A light and electron microscopic study. J. Comf. Neural. 212, 247–267 (1982).

    Article  CAS  Google Scholar 

  11. Sotelo, C. & Alvarado-Mallart, R.-M. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegen-erative ataxia. Proc. Natl. Acad. Sci. USA 83, 1135–1139 (1986).

    Article  CAS  Google Scholar 

  12. Triarhou, L.C., Low, W.C. & Ghetti, B. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat. Embryol. 176, 145–154 (1987).

    Article  CAS  Google Scholar 

  13. Sotelo, C. & Alvarado-Mallart, R.M. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 20, 1–22 (1987).

    Article  CAS  Google Scholar 

  14. Triarhou, L.C., Low, W.C. & Ghetti, B. Intraparenchymal grafting of cerebellar cell suspensions to the deep cerebellar nuclei of pcdmutant mice, with particular emphasis on re-establishment of a Purkinje cell cortico-nuclear projection. Anat. Embryol. 185, 409–420 (1992).

    Article  CAS  Google Scholar 

  15. Gardette, R., Alvarado-Mallart, R.M., Crepel, F. & Sotelo, C. Electrophysio-logical demonstration of a synaptic integration of transplanted Purkinje cells into the cerebellum of the adult Purkinje cell degeneration mutant mouse. Neuroscience 24, 777–789 (1988).

    Article  CAS  Google Scholar 

  16. Triarhou, L.C., Low, W.C. & Ghetti, B. Serotonin fiber innervation of cerebellar cell suspensions intraparenchymally grafted to the cerebellum of pcdmutant mice. Neurochem. Res. 17, 475–182 (1992).

    Article  CAS  Google Scholar 

  17. LeRoith, D. et al. Insulin-like growth factors in the brain. in Neurotrophic Factors (eds. Loughlin, S.E. & Fallon, J.H.) 391–114 (Academic Press, San Diego, 1993).

    Google Scholar 

  18. Hepler, J.E. & Lund, P.K. Molecular biology of the insulin-like growth factors: Relevance to nervous system function. Mol. Neurobiol. 4, 93–127 (1990).

    Article  Google Scholar 

  19. Torres-Aleman, I., Pons, S. & Arevalo, M.A. The insulin-like growth factor I system in the rat cerebellum: Developmental regulation and role in neuronal survival and differentiation. J. Neurosd. Res. 39, 117–126 (1994).

    Article  CAS  Google Scholar 

  20. Nieto-Bona, M.P., Garcia-Segura, L.M. & Torres-Aleman, I. Orthograde transport and release of insulin-like growth factor I from the inferior olive to the cerebellum. J. Neurosci. Res. 36, 520–527 (1993).

    Article  CAS  Google Scholar 

  21. Bondy, C.A. Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J. Neurosci. 11, 3442–3455 (1991).

    Article  CAS  Google Scholar 

  22. Bondy, C.A. & Lee, W.-H. Developmental and injury-induced patterns of IGF and IGF receptor gene expression in the brain: Functional implications. Ann. N.Y. Acad. Sci. 692, 33–43 (1993).

    Article  CAS  Google Scholar 

  23. Bondy, C., Werner, H., Roberts, C.T. & LeRoith, D. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: Comparison with insulin-like growth factors I and II. Neuroscience 46, 909923 (1992).

    Article  CAS  Google Scholar 

  24. Lee, W.-H., Javedan, S. & Bondy, C.A. Coordinate expression of insulin-like growth factor system components by neurons and neuroglia during retinal and cerebellar development. J. Neurosci. 12, 4737–744 (1992).

    Article  CAS  Google Scholar 

  25. Bondy, C. & Lee, W.-H. Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development. J. Neurosci. 13, 5092–5104 (1993).

    Article  CAS  Google Scholar 

  26. Bondy, C.A., Bach, M.A. & Lee, W.-H. Mapping of brain insulin and insulin-like growth factor receptor gene expression by in situ hybridization. Neuroprotocols 1, 240–249 (1992).

    Article  CAS  Google Scholar 

  27. Lee, W.-H., Michels, K.M. & Bondy, C.A. Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: Correlation with insulin-like growth factors I and II. Neuroscience 53, 251–265 (1993).

    Article  CAS  Google Scholar 

  28. Sokal, R.R. & Rohlf, F.J. Biometry, 2nd edn. (Freeman, New York, 1981).

    Google Scholar 

  29. Castro-Alamancos, M.A. & Torres-Aleman, I. Long-term depression of gluta-mate-induced y-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 90, 7386–7390 (1993).

    Article  CAS  Google Scholar 

  30. Lee, P.O., Conover, C.A. & Powell, D.R. Regulation and function of insulin-like growth factor-binding protein-1. Proc. Soc. Exp. Biol. Med. 204, 4–29 (1993).

    Article  CAS  Google Scholar 

  31. Obata, K. GABA in Purkinje cells and motoneurons. Experientia 25, 1285 (1969).

    Article  Google Scholar 

  32. Thach, W.T., Kane, S.A., Mink, J.W. & Goodkin, H.P. Cerebellar output: Multiple maps and modes of control in movement coordination. in The Cerebellum Revisited (eds Llinas, R. & Sotelo, C.) 283–300 (Springer-Verlag, New York, 1992).

    Chapter  Google Scholar 

  33. Yuasa, S., Kawamura, K., Ono, K., Yamakuni, T. & Takahashi, Y. Development and migration of Purkinje cells in the mouse cerebellar primordium. Anat. Embryol. 184, 195–212 (1991).

    Article  CAS  Google Scholar 

  34. Wetts, R., Moran, T., Oster-Granite, M. & Gearhart, J. Effect of Purkinje cell loss on complex motor behavior. Soc. Neurosci. Abstr. 11, 1037 (1985).

    Google Scholar 

  35. Caddy, K.W.T. & Biscoe, T.J. Structural and quantitative studies in the normal C3H and Lurcher mutant mouse. Philos. Trans. R. Soc. Land. B. Biol. Sci. 287, 167–201 (1979).

    Article  CAS  Google Scholar 

  36. Mullen, R.J. & La Vail, M.M. Two new types of retinal degeneration in cerebellar mutant mice. Nature 258, 528–530 (1975).

    Article  CAS  Google Scholar 

  37. Greer, C.A. & Shepherd, G.M. Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration. Brain Res. 235, 156–161 (1982).

    Article  CAS  Google Scholar 

  38. O'Gorman, S. & Sidman, R.L. Degeneration of thalamic neurons in 'Purkinje cell degeneration' mutant mice. I. Distribution of neuron loss. J. Camp. Neural. 234, 277–297 (1985).

    Article  CAS  Google Scholar 

  39. BureS, J., BuresovA, O. & Huston, J. Techniques and Basic Experiments for the Study of Brain and Behavior 37–89 (Elsevier Scientific Publishing Co., Amsterdam, 1976).

    Book  Google Scholar 

  40. Jones, B. J. & Roberts, D.J. The quanitative measurement of motor incoordina-tion in nai've mice using an accelerating Rotarod. J. Pharm. Pharmacol. 20, 302–304 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Lee, WH. & Triarhou, L. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF–I system genes and partially restore behavioral function. Nat Med 2, 65–71 (1996). https://doi.org/10.1038/nm0196-65

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0196-65

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing