Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of human T lymphocytes from bone marrow CD34+ cells in vitro

Abstract

Analysis of the events that regulate development of red blood cells or granulocytes has led to therapies altering clinical conditions associated with anemia or neutropenia. The development of therapeutic approaches to target conditions associated with lymphopenia, such as AIDS, has been thwarted by limited techniques for studying T–lymphocyte development. We describe an in vitro system in which human bone marrow CD34+ cells proliferate, acquire the expression of the lymphoid–specific RAG–2 gene and a broad repertoire of rearranged T–cell receptor genes, develop the ability to produce T cell–specific interleukin–2 and achieve a range of T–cell immunophenotypes. The cells also become susceptible to infection with the T–lymphotropic strain of human immunodeficiency virus–1, HIV–1IIIB. This culture system induces human T lymphopoiesis and may permit further analysis of the events regulating human T–lineage differentiation. It provides a preclinical model for screening stem cell gene therapies directed toward AIDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dexter, T.M., Allen, T.D. & Lajha, L.G. Conditions controlling the proliferation of hemopoietic stem cells in vitro. J. Cell. Physiol. 91, 335–344 (1977).

    Article  CAS  Google Scholar 

  2. Whitlock, C.A. & Witte, O.N. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc. Natl. Acad. Sci. USA 79, 3608–3612 (1982).

    Article  CAS  Google Scholar 

  3. Haynes, B., Martin, M., Kay, H. & Kurtzberg, J. Early events in human T cell ontogeny. J. Exp. Med. 168, 1061–1080 (1988).

    Article  CAS  Google Scholar 

  4. Kurtzberg, J., Denning, S., Nycum, L., Singer, K. & Haynes, B. Immature human thymocytes can be driven to differentiate into nonlymphoid lineages by cy-tokines from thymic epithelial cells. Proc. Natl. Acad. Sci. USA 86, 7575–7579 (1989).

    Article  CAS  Google Scholar 

  5. Jenkinson, E.J., Franchi, L.L., Kingston, R. & Owen, J.J.T. Effect of deoxyguanosine on lymphopoiesis in the developing thymus rudiment in vitro: Application in the production of chimeric thymus rudiments. Eur. J. Immunol. 12, 583–587 (1982).

    Article  CAS  Google Scholar 

  6. Yeoman, H. et al. Human bone marrow and umbilical cord blood cells generate CD4+ and CD8+ single-positive T cells in murine fetal thymus organ culture. Immunology 90, 10778–10782 (1993).

    CAS  Google Scholar 

  7. Galy, A., Verma, S., Barcena, A. & Spits, H. Precursors of CD3+CD4+CD8+ cells in the human thymus are defined by expression of CD34: Delineation of early events in human thymic development. J. Exp. Med. 178, 391–401 (1993).

    Article  CAS  Google Scholar 

  8. Peault, B., Weissman, I.L., Baum, C., McCune, J.M. & Tsukamoto, A. Lymphoid reconstitution of the human fetal thymus in SCID mice with CD34+ precursor cells. J. Exp. Med. 174, 1283–1286 (1991).

    Article  CAS  Google Scholar 

  9. Akkina, R.K., Rosenblatt, J.D., Campbell, A.G., Chen, I.S.Y. & Zack, J.A. Modeling human lymphoid precursor cell gene therapy in the SCID-hu mouse. Blood 84, 1393–1398 (1994).

    CAS  PubMed  Google Scholar 

  10. Lyerly, H.K., Matthews, T.J., Langlois, A.J., Bolognesi, D.P. & Winhold, K.J., T-cell lymphotropic virus IIIB glycoprotein (gp120) bound to CD4 determinants on normal lymphocytes and expressed by infected cells serves as target for immune attack. Proc. Natl. Acad. Sci. USA 84, 4601–4605 (1987).

    Article  CAS  Google Scholar 

  11. Aldrovandi, G.M. et al. The SCID-hu mouse as a model for HIV-1 infection. Nature 363, 732–736 (1993).

    Article  CAS  Google Scholar 

  12. Bonyhadi, M.L. et al. HIV induces thymus depletion in vivo. Nature 363, 728–732 (1993).

    Article  CAS  Google Scholar 

  13. Su, L. et al. HIV-1 induced thymocyte depletion is associated with indirect cytopathicity and infection of progenitor cells in vivo. Immunity 2, 25–36 (1995).

    Article  CAS  Google Scholar 

  14. Stanley, S.K. et al. Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J. Exp. Med. 178, 1151–1163 (1993).

    Article  CAS  Google Scholar 

  15. Tanaka, K.E. et al. HIV-1 infection of human fetal thymocytes. J. Acauir. Immune Deftc. Syndr. 5, 94–101 (1992).

    CAS  Google Scholar 

  16. Rosenzweig, M., Clark, D.P. & Gaulton, G.N. Selective thymocyte depletion in neonatal HIV-1 thymic infection. AIDS 7, 1601–1605 (1993).

    Article  CAS  Google Scholar 

  17. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  Google Scholar 

  18. Kalams, S.A. et al. Longitudinal analysis of T cell receptor (TCR) gene usage by human immunodeficiency virus 1 envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR repertoire. J. Exp. Med. 179, 1261–1271 (1994).

    Article  CAS  Google Scholar 

  19. Wolf, S.F., Sieburth, D. & Sypek, J. Interleukin 12: A key modulator of immune function. Stem Cells 12, 154–168 (1994).

    Article  CAS  Google Scholar 

  20. Jacobsen, S.E.W., Veiby, O.P. & Smeland, E.B. Cytotoxic lymphocyte maturation factor (interleukin 12) is a synergistic growth factor for hematopoietic stem cells. J. Exp. Med. 178, 413–418 (1993).

    Article  CAS  Google Scholar 

  21. Hirayama, F. et al. Synergistic interaction between interleukin-12 and steel factor in support of proliferation of murine lymphohematopoietic progenitors in culture. Blood 83, 92–98 (1994).

    CAS  PubMed  Google Scholar 

  22. Godfrey, D.I. et al. IL-12 influences intrathymic T cell development. J. Immunol. 152, 2729–2734 (1994).

    CAS  PubMed  Google Scholar 

  23. Kobayashi, M. et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biological effects on human lymphocytes. J. Exp. Med. 170, 827–845 (1989).

    Article  CAS  Google Scholar 

  24. Lyman, S.D. et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine ki-nase receptor: A proliferative factor for primitive hematopoietic cells. Cell 75, 1157–1167 (1993).

    Article  CAS  Google Scholar 

  25. Hannum, C. et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 368, 643–648 (1994).

    Article  CAS  Google Scholar 

  26. Jacobsen, S.E.W., Okkenhaug, C., Myklebust, J., Veilby, O.P. & Lyman, S.D. The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: Synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors. J. Exp. Med. 181, 1357–1363 (1995).

    Article  CAS  Google Scholar 

  27. Terstappen, L.W.W.N., Huang, S. & Picker, L.J. Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. Blood 79, 666–677 (1992).

    CAS  PubMed  Google Scholar 

  28. Kraft, D.L., Weissman, I.L. & Waller, E.K. Differentiation of CD3–4–8– human fetal thymocytes in vivo: Characterization of CD3–4+8– intermediate. J. Exp. Med. 178, 265–277 (1993).

    Article  CAS  Google Scholar 

  29. Tjonnfjord, G.E., Veilby, O.P., Steen, R. & Egeland, T. T lymphocyte differentiation in vitro from adult human prethymic CD34+ bone marrow cells. J. Exp. Med. 177, 1531–1539 (1993).

    Article  CAS  Google Scholar 

  30. Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, A., Zhu, H., Levine, J. et al. Generation of human T lymphocytes from bone marrow CD34+ cells in vitro. Nat Med 2, 46–51 (1996). https://doi.org/10.1038/nm0196-46

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0196-46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing