Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Making the connections in nerve regeneration

New findings suggest that there are multiple inhibitory signals for regenerating neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. de Medinaceli, L. & Seaber, A.V. Experimental nerve reconnection: importance of initial repair. Microsurgery 10, 56–70 (1989).

    Article  CAS  Google Scholar 

  2. David, S. & Aguayo, A.J. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933 (1981).

    Article  CAS  Google Scholar 

  3. Kierstead, S.A. et al. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science 246, 255–257 (1989).

    Article  Google Scholar 

  4. Villegas-Perez, M-P., Vidal-Sanz, M., Rasminsky, M., Bray, G.M. & Aguayo, A.J. Rapid and protracted phases of retinal ganglion Cell loss follow axotomy in the optic nerve of adult rats. J. Neurobiol. 24, 23–36 (1993).

    Article  CAS  Google Scholar 

  5. Caroni, P. & Schwab, M.E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106, 1281–1288 (1988).

    Article  CAS  Google Scholar 

  6. Schnell, L., Schneider, R., Kolbeck, R., Barde, Y-A. & Schwab, M.E. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367, 170–173 (1994).

    Article  CAS  Google Scholar 

  7. McKerracher, L. et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811 (1994).

    Article  CAS  Google Scholar 

  8. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R. & Filbin, M.T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767 (1994).

    Article  CAS  Google Scholar 

  9. Johnson, P.W. et al. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron 3, 377–385 (1989).

    Article  CAS  Google Scholar 

  10. Schäfer, M., Fruttiger, M., Montag, D., Schachner, M. & Martini, R. Disruption of the myelin-associated glycoprotein (MAG) gene improves axonal regeneration in C57BL/WLD5 mice. Abstr. Soc. Neumscience. 612.1 (1995).

  11. Bartsch, U. et al. Lack of evidence that the myelin-associated glycoprotein (MAG) is a major inhibitor of axonal regeneration. Abstr. Soc. Neumscience. 612.2 (1995).

  12. Carbonetto, S., Evans, D. & Cochard, P. Nerve fiber growth in culture on tissue substrates from central and peripheral nervous system. J. Neurosci. 7, 610–620 (1987).

    Article  CAS  Google Scholar 

  13. Savio, T. & Schwab, M.E. Rat CNS white matter, but not gray matter, is nonpermissive for neu-ronal cell adhesion and fibre outgrowth. J. Neurosci. 9, 1126–1133 (1989).

    Article  CAS  Google Scholar 

  14. Bedi, K.S., Winter, J., Berry, M. & Cohen, J. Adult rat dorsal root ganglion neurons extend neurites on predegenerated but not on normal peripheral nerves in vitro. Eur. J. Neurosci. 4, 193–200 (1992).

    Article  Google Scholar 

  15. David, S., Braun, P.E., Jackson, D.L., Kottis, V. & McKerracher, L. Laminin overrides the inhibitory effects of PNS and CNS myelin-derived inhibitors of neurite growth. J. Neurosci. Res. 42, 594–602 (1995).

    Article  CAS  Google Scholar 

  16. Shewan, D., Berry, M., Bedi, K. & Cohen, J. Embryonic optic nerve tissue fails to support neurite outgrowth by central and peripheral neurons in vitro. Eur. J. Neurosci. 5, 809–817 (1993).

    Article  CAS  Google Scholar 

  17. Keynes, R.J., Johnson, A.R., Picart, C.J., Dunin-Borkowski, O.M. & Cook, G.M.W. A glycoprotein fraction from adult chicken grey matter causes collapse of CNS and PNS growth cones in vitro. Abstr. Soc. Neurosci. 16, 77.6 (1990).

    Google Scholar 

  18. Keynes, R.J. & Cook, G.M.W. Axon guidance molecules. Cell 83, 161–169 (1995).

    Article  CAS  Google Scholar 

  19. Björklund, A. A question of making it work. Nature 367, 112–113 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nash, J., Pini, A. Making the connections in nerve regeneration. Nat Med 2, 25–26 (1996). https://doi.org/10.1038/nm0196-25

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0196-25

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing