A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects

Abstract

The adoptive transfer of T cells engineered with a chimeric antigen receptor (CAR) (hereafter referred to as CAR-T cells) specific for the B lymphocyte antigen CD19 has shown impressive clinical responses in patients with refractory B cell malignancies1,2,3,4,5,6,7. However, the therapeutic effects of CAR-T cells that target other malignancies have not yet resulted in significant clinical benefit8,9,10,11. Although inefficient tumor trafficking and various immunosuppressive mechanisms can impede CAR-T cell effector responses, the signals delivered by the current CAR constructs may still be insufficient to fully activate antitumor T cell functions. Optimal T cell activation and proliferation requires multiple signals, including T cell receptor (TCR) engagement (signal 1), co-stimulation (signal 2) and cytokine engagement (signal 3)12. However, CAR constructs currently being tested in the clinic contain a CD3z (TCR signaling) domain and co-stimulatory domain(s) but not a domain that transmits signal 3 (refs. 13, 14, 15, 16, 17, 18). Here we have developed a novel CAR construct capable of inducing cytokine signaling after antigen stimulation. This new-generation CD19 CAR encodes a truncated cytoplasmic domain from the interleukin (IL)-2 receptor β-chain (IL-2Rβ) and a STAT3-binding tyrosine-X-X-glutamine (YXXQ) motif, together with the TCR signaling (CD3z) and co-stimulatory (CD28) domains (hereafter referred to as 28-ΔIL2RB-z(YXXQ)). The 28-ΔIL2RB-z(YXXQ) CAR-T cells showed antigen-dependent activation of the JAK kinase and of the STAT3 and STAT5 transcription factors signaling pathways, which promoted their proliferation and prevented terminal differentiation in vitro. The 28-ΔIL2RB-z(YXXQ) CAR-T cells demonstrated superior in vivo persistence and antitumor effects in models of liquid and solid tumors as compared with CAR-T cells expressing a CD28 or 4-1BB co-stimulatory domain alone. Taken together, these results suggest that our new-generation CAR has the potential to demonstrate superior antitumor effects with minimal toxicity in the clinic and that clinical translation of this novel CAR is warranted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Generation of the CD19-specific chimeric antigen receptor constructs to induce JAK–STAT pathway activation.
Figure 2: The 28-ΔIL2RB-z(YXXQ) CAR-T cells show a superior proliferative capacity and maintain less differentiated memory T cell phenotypes after antigen stimulation.
Figure 3: The 28-ΔIL2RB-z(YXXQ) CAR-T cells have unique gene expression profiles and show potent cytotoxic activity after repetitive antigen stimulations.
Figure 4: T cells transduced with the 28-ΔIL2RB-z(YXXQ) CAR have superior antitumor effects in vivo.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    Brentjens, R.J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra38 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2

    Grupp, S.A. et al. Chimeric-antigen-receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Maude, S.L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4

    Lee, D.W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Davila, M.L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6

    Porter, D.L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Kochenderfer, J.N. et al. B cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Till, B.G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Kershaw, M.H. et al. A phase 1 study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Pule, M.A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Kershaw, M.H., Westwood, J.A. & Darcy, P.K. Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 13, 525–541 (2013).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Kowolik, C.M. et al. CD28 co-stimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66, 10995–11004 (2006).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Brentjens, R.J. et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 13, 5426–5435 (2007).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Stephan, M.T. et al. T cell–encoded CD80 and 4-1BBL induce auto- and trans-co-stimulation, resulting in potent tumor rejection. Nat. Med. 13, 1440–1449 (2007).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Milone, M.C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Savoldo, B. et al. CD28 co-stimulation improves expansion and persistence of chimeric-antigen-receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Lim, W.A. & June, C.H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Rochman, Y., Spolski, R. & Leonard, W.J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Zeng, R. et al. The molecular basis of IL-21-mediated proliferation. Blood 109, 4135–4142 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Hinrichs, C.S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Xin, G. et al. A critical role of IL-21-induced BATF in sustaining CD8 T cell–mediated chronic viral control. Cell Rep. 13, 1118–1124 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 201, 139–148 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Markley, J.C. & Sadelain, M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell–mediated rejection of systemic lymphoma in immunodeficient mice. Blood 115, 3508–3519 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Quintarelli, C. et al. Coexpression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110, 2793–2802 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Pegram, H.J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Hsu, C. et al. Cytokine-independent growth and clonal expansion of a primary human CD8+ T cell clone following retroviral transduction with the IL15 gene. Blood 109, 5168–5177 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21, 2278–2288 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Stahl, N. et al. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267, 1349–1353 (1995).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Nicholson, I.C. et al. Construction and characterization of a functional CD19-specific single chain Fv fragment for immunotherapy of B lineage leukemia and lymphoma. Mol. Immunol. 34, 1157–1165 (1997).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Gattinoni, L. et al. A human memory T cell subset with stem-cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Marzec, M. et al. Oncogenic kinase NPM–ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl. Acad. Sci. USA 105, 20852–20857 (2008).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Lastwika, K.J. et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small-cell lung cancer. Cancer Res. 76, 227–238 (2016).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR–Cas9 enhances tumor rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Cherkassky, L. et al. Human CAR-T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Sabatino, M. et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B cell malignancies. Blood 128, 519–528 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Cieri, N. et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121, 573–584 (2013).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Cui, W., Liu, Y., Weinstein, J.S., Craft, J. & Kaech, S.M. An interleukin-21–interleukin-10–STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Siegel, A.M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605–615 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Butler, M.O. et al. Ex vivo expansion of human CD8+ T cells using autologous CD4+ T cell help. PLoS One 7, e30229 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Jedema, I., van der Werff, N.M., Barge, R.M., Willemze, R. & Falkenburg, J.H. New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood 103, 2677–2682 (2004).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CIHR Project Grant 362860 (N.H.), Ontario Institute for Cancer Research Clinical Investigator Award IA-039 (N.H.), BioCanRX Catalyst Program grant FY17CAT7 (N.H.), the Princess Margaret Cancer Foundation (M.O.B. and N.H.), a Japan Society for the Promotion of Science Postdoctoral Fellowship for Overseas Researchers (Y.K.), a Guglietti Fellowship Award (Y.K.), a Canadian Institutes of Health Research Canada Graduate Scholarship (T.G.), the Province of Ontario (T.G. and M.A.) and a Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship (T.G.). This study was partly sponsored by Takara Bio, Inc.

Author information

Affiliations

Authors

Contributions

Y.K. and N.H. designed the project; Y.K., S.T., T.G., M.A., C.-H.W. and K.S. performed the experiments; M.D.M. and M.O.B. provided critical human samples and contributed to the writing of the manuscript; and Y.K. and N.H. analyzed the results and wrote the manuscript.

Corresponding author

Correspondence to Naoto Hirano.

Ethics declarations

Competing interests

S.T. is an employee of Takara Bio, Inc. This study was partly sponsored by Takara Bio, Inc. The University Health Network has filed a patent application related to this study on which N.H., Y.K. and S.T. are named as inventors.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–18 & Supplementary Tables 1–3 (PDF 9605 kb)

Life Sciences Reporting Summary (PDF 213 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kagoya, Y., Tanaka, S., Guo, T. et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat Med 24, 352–359 (2018). https://doi.org/10.1038/nm.4478

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing