Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis

Abstract

Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. Lack of effective pharmacotherapies for NASH is largely attributable to an incomplete understanding of its pathogenesis. The deubiquitinase cylindromatosis (CYLD) plays key roles in inflammation and cancer. Here we identified CYLD as a suppressor of NASH in mice and in monkeys. CYLD is progressively degraded upon interaction with the E3 ligase TRIM47 in proportion to NASH severity. We observed that overexpression of Cyld in hepatocytes concomitantly inhibits lipid accumulation, insulin resistance, inflammation and fibrosis in mice with NASH induced in an experimental setting. Mechanistically, CYLD interacts directly with the kinase TAK1 and removes its K63-linked polyubiquitin chain, which blocks downstream activation of the JNK–p38 cascades. Notably, reconstitution of hepatic CYLD expression effectively reverses disease progression in mice with dietary or genetically induced NASH and in high-fat diet–fed monkeys predisposed to metabolic syndrome. Collectively, our findings demonstrate that CYLD mitigates NASH severity and identify the CYLD–TAK1 axis as a promising therapeutic target for management of the disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: CYLD is downregulated in fatty livers.
Figure 2: TRIM47 mediates the degradation of CYLD in NAFLD.
Figure 3: Hepatocyte-specific Cyld knockout exacerbates HFD-induced insulin resistance, hepatic steatosis and inflammation.
Figure 4: CYLD functions in NAFLD via inactivating the TAK1–JNK–p38 signaling pathway.
Figure 5: CYLD inhibits TAK1 activation through deubiquitination.
Figure 6: Hepatic CYLD overexpression improves HFD-induced hepatic steatosis, insulin resistance and inflammation in mice and monkeys.

References

  1. Byrne, C.D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62 (Suppl.), S47–S64 (2015).

    PubMed  Article  Google Scholar 

  2. Rinella, M.E. Nonalcoholic fatty liver disease: a systematic review. J. Am. Med. Assoc. 313, 2263–2273 (2015).

    CAS  Article  Google Scholar 

  3. Younossi, Z.M. et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    PubMed  Article  Google Scholar 

  4. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology https://doi.org/10.1002/hep.29367 (2017).

    PubMed  Article  Google Scholar 

  5. Michelotti, G.A., Machado, M.V. & Diehl, A.M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    CAS  PubMed  Article  Google Scholar 

  6. Hardy, T., Oakley, F., Anstee, Q.M. & Day, C.P. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11, 451–496 (2016).

    CAS  PubMed  Article  Google Scholar 

  7. Suzuki, A. & Diehl, A.M. Nonalcoholic steatohepatitis. Annu. Rev. Med. 68, 85–98 (2017).

    CAS  PubMed  Article  Google Scholar 

  8. Rotman, Y. & Sanyal, A.J. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut 66, 180–190 (2017).

    CAS  PubMed  Article  Google Scholar 

  9. Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242–1253 (2014).

    CAS  PubMed  Article  Google Scholar 

  10. Massoumi, R. Ubiquitin chain cleavage: CYLD at work. Trends Biochem. Sci. 35, 392–399 (2010).

    CAS  PubMed  Article  Google Scholar 

  11. Yoshida, H., Jono, H., Kai, H. & Li, J.D. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for Toll-like receptor 2 signaling via negative cross-talk with TRAF6 and TRAF7. J. Biol. Chem. 280, 41111–41121 (2005).

    CAS  PubMed  Article  Google Scholar 

  12. Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer, A. & Fässler, R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell 125, 665–677 (2006).

    CAS  PubMed  Article  Google Scholar 

  13. Reiley, W.W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat. Immunol. 7, 411–417 (2006).

    CAS  PubMed  Article  Google Scholar 

  14. Hutti, J.E. et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKɛ promotes cell transformation. Mol. Cell 34, 461–472 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Wu, X. et al. SCFβ–TRCP regulates osteoclastogenesis via promoting CYLD ubiquitination. Oncotarget 5, 4211–4221 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Zhao, X. et al. Gadolinium chloride ameliorates acute lung injury associated with severe acute pancreatitis in rats by regulating CYLD/NF-κB signaling. Biochem. Biophys. Res. Commun. 492, 255–261 (2017).

    CAS  PubMed  Article  Google Scholar 

  17. Yu, B. et al. CYLD deubiquitinates nicotinamide adenine dinucleotide phosphate oxidase 4 contributing to adventitial remodeling. Arterioscler. Thromb. Vasc. Biol. 37, 1698–1709 (2017).

    CAS  PubMed  Article  Google Scholar 

  18. Lee, B.C., Miyata, M., Lim, J.H. & Li, J.D. Deubiquitinase CYLD acts as a negative regulator for bacterium NTHi-induced inflammation by suppressing K63-linked ubiquitination of MyD88. Proc. Natl. Acad. Sci. USA 113, E165–E171 (2016).

    CAS  PubMed  Article  Google Scholar 

  19. Lim, J.H. et al. CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt. Nat. Commun. 3, 771 (2012).

    PubMed  Article  CAS  Google Scholar 

  20. Trompouki, E. et al. Truncation of the catalytic domain of the cylindromatosis tumor suppressor impairs lung maturation. Neoplasia 11, 469–476 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Reissig, S. et al. The deubiquitinating enzyme CYLD regulates the differentiation and maturation of thymic medullary epithelial cells. Immunol. Cell Biol. 93, 558–566 (2015).

    CAS  PubMed  Article  Google Scholar 

  22. Zhao, Y. et al. CYLD and the NEMO zinc finger regulate tumor necrosis factor signaling and early embryogenesis. J. Biol. Chem. 290, 22076–22084 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Annunziata, C.M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Keats, J.J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Hellerbrand, C. et al. Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 28, 21–27 (2007).

    CAS  PubMed  Article  Google Scholar 

  26. Tsagaratou, A., Trompouki, E., Grammenoudi, S., Kontoyiannis, D.L. & Mosialos, G. Thymocyte-specific truncation of the deubiquitinating domain of CYLD impairs positive selection in a NF-κB essential modulator-dependent manner. J. Immunol. 185, 2032–2043 (2010).

    CAS  PubMed  Article  Google Scholar 

  27. Reissig, S. et al. The tumor suppressor CYLD controls the function of murine regulatory T cells. J. Immunol. 189, 4770–4776 (2012).

    CAS  PubMed  Article  Google Scholar 

  28. Hellerbrand, C. & Massoumi, R. Cylindromatosis—a protective molecule against liver diseases. Med. Res. Rev. 36, 342–359 (2016).

    CAS  PubMed  Article  Google Scholar 

  29. Urbanik, T. et al. Liver specific deletion of CYLDexon7/8 induces severe biliary damage, fibrosis and increases hepatocarcinogenesis in mice. J. Hepatol. 57, 995–1003 (2012).

    CAS  PubMed  Article  Google Scholar 

  30. Nikolaou, K. et al. Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. Cancer Cell 21, 738–750 (2012).

    CAS  PubMed  Article  Google Scholar 

  31. Haas, J.T., Francque, S. & Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol. 78, 181–205 (2016).

    CAS  PubMed  Article  Google Scholar 

  32. Mathis, B.J. et al. CYLD-mediated signaling and diseases. Curr. Drug Targets 16, 284–294 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Sanches, S.C., Ramalho, L.N., Augusto, M.J., da Silva, D.M. & Ramalho, F.S. Nonalcoholic steatohepatitis: a search for factual animal models. BioMed Res. Int. 2015, 574832 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Arthur, J.S. & Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679–692 (2013).

    CAS  PubMed  Article  Google Scholar 

  35. Singh, A. et al. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell 148, 639–650 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Ji, Y.-X. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling. Nat. Commun. 7, 11267 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Reiley, W.W. et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J. Exp. Med. 204, 1475–1485 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Oseini, A.M. & Sanyal, A.J. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int. 37 (Suppl 1.), 97–103 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  39. Caldwell, S. NASH therapy: omega 3 supplementation, vitamin E, insulin sensitizers and statin drugs. Clin. Mol. Hepatol. 23, 103–108 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  40. Ajibade, A.A., Wang, H.Y. & Wang, R.F. Cell type–specific function of TAK1 in innate immune signaling. Trends Immunol. 34, 307–316 (2013).

    CAS  PubMed  Article  Google Scholar 

  41. Dai, L., Aye Thu, C., Liu, X.Y., Xi, J. & Cheung, P.C. TAK1, more than just innate immunity. IUBMB Life 64, 825–834 (2012).

    CAS  PubMed  Article  Google Scholar 

  42. Mihaly, S.R., Ninomiya-Tsuji, J. & Morioka, S. TAK1 control of cell death. Cell Death Differ. 21, 1667–1676 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. An, S. et al. USP18 protects against hepatic steatosis and insulin resistance through its deubiquitinating activity. Hepatology 66, 1866–1884 (2017).

    CAS  PubMed  Article  Google Scholar 

  44. Wang, P.X. et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat. Commun. 7, 10592 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Yan, F.J. et al. The E3 ligase tripartite motif 8 targets TAK1 to promote insulin resistance and steatohepatitis. Hepatology 65, 1492–1511 (2016).

    Article  CAS  Google Scholar 

  46. Seki, E. TAK1-dependent autophagy: a suppressor of fatty liver disease and hepatic oncogenesis. Mol. Cell. Oncol. 1, e968507 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  47. Roh, Y.S., Song, J. & Seki, E. TAK1 regulates hepatic cell survival and carcinogenesis. J. Gastroenterol. 49, 185–194 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Yang, L. et al. Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology 144, 1042–1054 e4 (2013).

    CAS  PubMed  Article  Google Scholar 

  49. Wang, C. et al. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII–TAK1–JNK/p38 and inhibiting IκBα kinase–NF-κB. J. Biol. Chem. 284, 3804–3813 (2009).

    CAS  PubMed  Article  Google Scholar 

  50. Zhao, N. et al. MicroRNA-26b suppresses the NF-κB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol. Cancer 13, 35 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Tey, S.K. et al. Nuclear Met promotes hepatocellular carcinoma tumorigenesis and metastasis by upregulation of TAK1 and activation of NF-κB pathway. Cancer Lett. 411, 150–161 (2017).

    CAS  PubMed  Article  Google Scholar 

  52. Gao, L. et al. Tumor necrosis factor receptor–associated factor 5 (Traf5) acts as an essential negative regulator of hepatic steatosis. J. Hepatol. 65, 125–136 (2016).

    CAS  PubMed  Article  Google Scholar 

  53. Xiang, M. et al. Targeting hepatic TRAF1–ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J. Hepatol. 64, 1365–1377 (2016).

    CAS  PubMed  Article  Google Scholar 

  54. Zhang, X.F. et al. TRAF1 is a key mediator for hepatic ischemia/reperfusion injury. Cell Death Dis. 5, e1467 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Hu, J. et al. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury. J. Hepatol. 64, 146–159 (2016).

    CAS  PubMed  Article  Google Scholar 

  56. Wang, P.X. et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat. Med. 23, 439–449 (2017).

    CAS  PubMed  Article  Google Scholar 

  57. Kleiner, D.E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    PubMed  Article  Google Scholar 

  58. Zhao, G.N. et al. Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat. Med. 23, 742–752 (2017).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank H.-B. Shu (Medical Research Institute, Wuhan University) for providing ubiquitin and several of its derivative plasmids. We thank Y. Rao, M. Guo and R. Zhang (Institute of Model Animal of Wuhan University) for their assistance in monkey experiments. This work was supported by grants from the National Science Fund for Distinguished Young Scholars (no. 81425005; H.L.), the Key Project of the National Natural Science Foundation (no. 81330005 and 81630011; H.L.), the National Science and Technology Support Project (no. 2014BAI02B01 and 2015BAI08B01; H.L.), the National Key Research and Development Program (no. 2013YQ030923-05 (H.L.) and no. 2016YFF0101500 (Z.-G.S.)), the National Natural Science Foundation of China (no. 81770053 (Z.-G.S.) and no. 91729303 (L.C.)), the Key Collaborative Project of the National Natural Science Foundation (no. 91639304; H.L.) and the National Institutes of Health (no. DK048873, DK056626 and DK103046; D.E.C.).

Author information

Authors and Affiliations

Authors

Contributions

Y.-X.J., Z.H., X.Y. and X.W. designed and performed the experiments, analyzed data and wrote the manuscript; L.-P.Z. performed molecular experiments, analyzed data and wrote the manuscript; P.-X.W. performed animal experiments and analyzed data; X.-J.Z., M.A.-B. and L.C. wrote the manuscript and provided important advice for this study; P.Z., Y.-X.L., L.B., M.-M.G. and H.Z. performed biological experiments and analyzed data; S.T. established mouse and monkey NASH models; Y.W. and Z.-X.H. performed the experiments involving monkeys; X.-Y.Z. performed western blot experiments; Y.Z. performed histopathological analysis; J.G. constructed the genetically engineered mice and performed AAV8 construction; Z.-G.S. and F.L. wrote the manuscript and provided important advice for this study; D.E.C. and H.L. designed experiments, wrote the manuscript and supervised the study.

Corresponding authors

Correspondence to David E Cohen or Hongliang Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–12 & Supplementary Tables 1–4 (PDF 19998 kb)

Life Sciences Reporting Summary

Life Sciences Reporting Summary (PDF 219 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, YX., Huang, Z., Yang, X. et al. The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis. Nat Med 24, 213–223 (2018). https://doi.org/10.1038/nm.4461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4461

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing