Molecular definition of a metastatic lung cancer state reveals a targetable CD109–Janus kinase–Stat axis

Abstract

Lung cancer is the leading cause of cancer deaths worldwide, with the majority of mortality resulting from metastatic spread. However, the molecular mechanism by which cancer cells acquire the ability to disseminate from primary tumors, seed distant organs, and grow into tissue-destructive metastases remains incompletely understood. We combined tumor barcoding in a mouse model of human lung adenocarcinoma with unbiased genomic approaches to identify a transcriptional program that confers metastatic ability and predicts patient survival. Small-scale in vivo screening identified several genes, including Cd109, that encode novel pro-metastatic factors. We uncovered signaling mediated by Janus kinases (Jaks) and the transcription factor Stat3 as a critical, pharmacologically targetable effector of CD109-driven lung cancer metastasis. In summary, by coupling the systematic genomic analysis of purified cancer cells in distinct malignant states from mouse models with extensive human validation, we uncovered several key regulators of metastatic ability, including an actionable pro-metastatic CD109–Jak–Stat3 axis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design, barcode analysis, and isolation of samples for gene expression profiling from different stages of metastatic progression.
Figure 2: Lung tumors undergo stepwise changes in gene expression programs during metastatic progression.
Figure 3: In vivo functional screening identifies CD109 as a driver of metastatic ability.
Figure 4: CD109 regulates Stat3 activity to drive malignant cellular phenotypes and metastatic ability.
Figure 5: Jak–Stat3 signaling is a critical pro-metastatic effector of Cd109.
Figure 6: Pharmacological inhibition of Jak–Stat signaling inhibits metastatic ability of lung adenocarcinoma cells.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    Nguyen, D.X., Bos, P.D. & Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

    Article  CAS  Google Scholar 

  2. 2

    Massagué, J. & Obenauf, A.C. Metastatic colonization by circulating tumor cells. Nature 529, 298–306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Winslow, M.M. et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 473, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Bos, P.D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Nguyen, D.X. et al. WNT–TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  Google Scholar 

  7. 7

    Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Jackson, E.L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article  CAS  Google Scholar 

  9. 9

    Kirsch, D.G. et al. A spatially and temporally restricted mouse model of soft-tissue sarcoma. Nat. Med. 13, 992–997 (2007).

    Article  CAS  Google Scholar 

  10. 10

    Chiou, S.H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR–Cas9-mediated somatic genome editing. Genes Dev. 29, 1576–1585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Meuwissen, R. et al. Induction of small-cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4, 181–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Takahashi, T. et al. p53: a frequent target for genetic abnormalities in lung cancer. Science 246, 491–494 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Rodenhuis, S. et al. Mutational activation of the Kras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N. Engl. J. Med. 317, 929–935 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Rodenhuis, S. et al. Incidence and possible clinical significance of Kras oncogene activation in adenocarcinoma of the human lung. Cancer Res. 48, 5738–5741 (1988).

    CAS  PubMed  Google Scholar 

  17. 17

    Weir, B.A. et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Siegel, R.L., Miller, K.D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).

    Article  Google Scholar 

  19. 19

    Jackson, E.L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic Kras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Caswell, D.R. et al. Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov. 4, 781–789 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Cheung, W.K. et al. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis. Cancer Cell 23, 725–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Kim, W.Y. et al. HIF-2α cooperates with RAS to promote lung tumorigenesis in mice. J. Clin. Invest. 119, 2160–2170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Shedden, K. et al. Gene-expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat. Med. 14, 822–827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Der, S.D. et al. Validation of a histology-independent prognostic gene signature for early-stage, non-small-cell lung cancer including stage IA patients. J. Thorac. Oncol. 9, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Van Laar, R.K. Genomic signatures for predicting survival and adjuvant chemotherapy benefit in patients with non-small-cell lung cancer. BMC Med. Genomics 5, 30 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Gyo˝rffy, B., Surowiak, P., Budczies, J. & Lánczky, A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8, e82241 (2013).

    Article  CAS  Google Scholar 

  28. 28

    Brady, J.J. et al. An Arntl2-driven secretome enables lung adenocarcinoma metastatic self-sufficiency. Cancer Cell 29, 697–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Finnson, K.W. et al. Identification of CD109 as part of the TGF-β receptor system in human keratinocytes. FASEB J. 20, 1525–1527 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Bizet, A.A. et al. The TGF-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors. Biochim. Biophys. Acta 1813, 742–753 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Mii, S. et al. Epidermal hyperplasia and appendage abnormalities in mice lacking CD109. Am. J. Pathol. 181, 1180–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Litvinov, I.V. et al. CD109 release from the cell surface in human keratinocytes regulates TGF-β receptor expression, TGF-β signaling and STAT3 activation: relevance to psoriasis. Exp. Dermatol. 20, 627–632 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Hagiwara, S. et al. Processing of CD109 by furin and its role in the regulation of TGF-β signaling. Oncogene 29, 2181–2191 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Govindan, R. et al. Genomic landscape of non-small-cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Lipson, D. et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18, 382–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Xu, Y.H. & Lu, S. A meta-analysis of STAT3 and phospho-STAT3 expression and survival of patients with non-small-cell lung cancer. Eur. J. Surg. Oncol. 40, 311–317 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Jiang, R. et al. Correlation of activated STAT3 expression with clinicopathologic features in lung adenocarcinoma and squamous cell carcinoma. Mol. Diagn. Ther. 15, 347–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Bromberg, J.F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Zhang, J.M. et al. CD109 attenuates TGF-β1 signaling and enhances EGF signaling in SK-MG-1 human glioblastoma cells. Biochem. Biophys. Res. Commun. 459, 252–258 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Ding, Z. et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470, 269–273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    David, C.J. et al. TGF-β tumor suppression through a lethal EMT. Cell 164, 1015–1030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Zhong, Z., Wen, Z. & Darnell, J.E. Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Parganas, E. et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 385–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Yu, C.L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Matsunaga, Y. et al. Effects of a Janus kinase inhibitor, pyridone 6, on airway responses in a murine model of asthma. Biochem. Biophys. Res. Commun. 404, 261–267 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Pedranzini, L. et al. Pyridone 6, a pan–Janus-activated kinase inhibitor, induces growth inhibition of multiple myeloma cells. Cancer Res. 66, 9714–9721 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Quintás-Cardama, A. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115, 3109–3117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Van Rompaey, L. et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J. Immunol. 191, 3568–3577 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Tao, J., Li, H., Li, Q. & Yang, Y. CD109 is a potential target for triple-negative breast cancer. Tumour Biol. 35, 12083–12090 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Zhang, F. et al. SWATH- and iTRAQ-based quantitative proteomic analyses reveal an overexpression and biological relevance of CD109 in advanced NSCLC. J. Proteomics 102, 125–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Greenleaf, W.J. Assaying the epigenome in limited numbers of cells. Methods 72, 51–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Denny, S.K. et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell 166, 328–342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA 94, 3801–3804 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Tuveson, D.A. et al. Endogenous oncogenic K-rasG12D stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    DuPage, M., Dooley, A.L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Piskol, R., Ramaswami, G. & Li, J.B. Reliable identification of genomic variants from RNA–seq data. Am. J. Hum. Genet. 93, 641–651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Patro, R., Mount, S.M. & Kingsford, C. Sailfish enables alignment-free isoform quantification from RNA–seq reads using lightweight algorithms. Nat. Biotechnol. 32, 462–464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Leek, J.T. & Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  PubMed  Google Scholar 

  64. 64

    Durinck, S., Spellman, P.T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  66. 66

    Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

  67. 67

    Ishwaran, H. & Kogalur, U.B. Random survival forests for R. R News 7, 25–31 (2007).

    Google Scholar 

  68. 68

    Ishwaran, H., Kogalur, U.B., Blackstone, E.H. & Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2, 841–860 (2008).

    Article  Google Scholar 

  69. 69

    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA–seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Doench, J.G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Morimoto-Tomita, M., Ohashi, Y., Matsubara, A., Tsuiji, M. & Irimura, T. Mouse colon carcinoma cells established for high incidence of experimental hepatic metastasis exhibit accelerated and anchorage-independent growth. Clin. Exp. Metastasis 22, 513–521 (2005).

    Article  PubMed  Google Scholar 

  73. 73

    Gebäck, T., Schulz, M.M., Koumoutsakos, P. & Detmar, M. TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46, 265–274 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Chu and S. Cheemalavagu for technical assistance, the Stanford Shared FACS Facility and Protein and Nucleic Acid Facility for expert assistance, J. Pollack and X. Gong for reagents, S. Dolan and A. Orantes for administrative support, and D. Feldser, C. Murray, and members of the Winslow lab for helpful comments. This work was supported by an American Lung Association Fellowship (C.-H.C.), the US National Institutes of Health (NIH) (grant no. F32-CA189659 (J.J.B.), T32-CA009302 (A.L.S.), R01-GM102484 (J.B.L.), R01-CA157510 (E.A.S.-C.), R01-CA175336 (M.M.W.), and R01-CA204620 (M.M.W.)), the Stanford Biomedical Informatics Training Grant from the National Library of Medicine (LM-07033; P.G.G.), a Bio-X Stanford Interdisciplinary Graduate Fellowship (P.G.G.), Stanford Graduate Fellowships (Z.N.R. and G.R.), National Science Foundation Graduate Research Fellowships (D.R.C. and Z.N.R.), the Spider Internship Funds (A.F.W.), an Alfred Sloan Fellowship (A.K.), a V Foundation for Cancer Research Martin D. Abeloff, M.D. V Scholar Award (M.M.W.), and, in part, by a Stanford Cancer Institute support grant (NIH P30-CA124435).

Author information

Affiliations

Authors

Contributions

C.-H.C. and M.M.W. conceived the study; C.-H.C. designed, conducted, and analyzed the majority of experiments; P.G.G. conducted the majority of bioinformatics analyses; Z.N.R., J.J.B., D.Y., R.K.M., D.R.C., S.-H.C., A.F.W., B.M.G., A.L.S., and K.E.K. conducted experiments, analyzed data and contributed to the Discussion; G.R. and J.B.L. (SNPiR), L.C.S. and E.A.S.-C. (pLKO library and human lung cell lines), and A.K. (bioinformatics) provided crucial reagents and discussion; and M.M.W. and C.-H.C. wrote the manuscript with comments from all authors.

Corresponding author

Correspondence to Monte M Winslow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–22 (PDF 15113 kb)

Supplementary Table 1

Gene expression profiles for all ex vivo samples. (XLS 27399 kb)

Supplementary Tables 2–8

Supplementary Table 2: Gene sets that are higher in late stage primary tumours(TnonMet and TMet) relative to KPT-Early/KT samples. Supplementary Table 3: Gene sets that are lower in late stage primary tumours(TnonMet and TMet) relative to KPT-Early/KT samples. Supplementary Table 4: Gene sets that are higher in metastases (Met) relative to nonmetastatic primary tumours (TnonMet). Supplementary Table 5: Gene sets that are lower in metastases (Met) relative to nonmetastatic primary tumours (TnonMet). Supplementary Table 6: Gene expression changes elicited by Cd109 knockdown. Supplementary Table 7: Gene sets that are higher in cells with Cd109 knocked down relative to control cells. Supplementary Table 8: Gene sets that are lower in cells with Cd109 knocked down relative to control cells. (XLS 3803 kb)

Supplementary Table 9

List of pLKO plasmids (XLSX 30 kb)

Supplementary Table10

List of qPCR Primers (XLSX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chuang, C., Greenside, P., Rogers, Z. et al. Molecular definition of a metastatic lung cancer state reveals a targetable CD109–Janus kinase–Stat axis. Nat Med 23, 291–300 (2017). https://doi.org/10.1038/nm.4285

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing