JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression

Abstract

Opportunistic fungal infections are a leading cause of death among immune-compromised patients, and there is a pressing need to develop new antifungal therapeutic agents because of toxicity and resistance to the antifungal drugs currently in use. Although C-type lectin receptor– and Toll-like receptor–induced signaling pathways are key activators of host antifungal immunity, little is known about the mechanisms that negatively regulate host immune responses to a fungal infection. Here we found that JNK1 activation suppresses antifungal immunity in mice. We showed that JNK1-deficient mice had a significantly higher survival rate than wild-type control mice in response to Candida albicans infection, and the expression of JNK1 in hematopoietic innate immune cells was critical for this effect. JNK1 deficiency leads to significantly higher induction of CD23, a novel C-type lectin receptor, through NFATc1-mediated regulation of the CD23 gene promoter. Blocking either CD23 upregulation or CD23-dependent nitric oxide production eliminated the enhanced antifungal response found in JNK1-deficient mice. Notably, JNK inhibitors exerted potent antifungal therapeutic effects in both mouse and human cells infected with C. albicans, indicating that JNK1 may be a therapeutic target for treating fungal infection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: JNK1 negatively regulates the antifungal innate immune response.
Figure 2: JNK1 suppresses CD23 induction by C. albicans.
Figure 3: Elevated CD23 and iNOS expression in JNK1 KO mice is responsible for the enhanced antifungal immune response.
Figure 4: JNK1 negatively regulates CD23 expression through elevated dectin-1-dependent NFAT activation.
Figure 5: JNK inhibitor shows therapeutic effect in antifungal immunity in vivo.
Figure 6: JNK inhibitor promotes the antifungal response in human cells.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    Brown, G.D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Kim, J.Y. Human fungal pathogens: why should we learn? J. Microbiol. 54, 145–148 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Wüthrich, M., Deepe, G.S. Jr. & Klein, B. Adaptive immunity to fungi. Annu. Rev. Immunol. 30, 115–148 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4

    Gow, N.A., van de Veerdonk, F.L., Brown, A.J. & Netea, M.G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10, 112–122 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5

    Underhill, D.M. & Pearlman, E. Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43, 845–858 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Plato, A., Hardison, S.E. & Brown, G.D. Pattern recognition receptors in antifungal immunity. Semin. Immunopathol. 37, 97–106 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Hardison, S.E. & Brown, G.D. C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol. 13, 817–822 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Hoving, J.C., Wilson, G.J. & Brown, G.D. Signalling C-type lectin receptors, microbial recognition and immunity. Cell. Microbiol. 16, 185–194 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Brown, G.D. et al. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196, 407–412 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Robinson, M.J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206, 2037–2051 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Zhu, L.L. et al. C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Saijo, S. et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 8, 39–46 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Saijo, S. et al. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Taylor, P.R. et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Dambuza, I.M. & Brown, G.D. C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32, 21–27 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Zhu, L.L. et al. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor–mediated antifungal innate immunity. J. Exp. Med. 213, 1555–1570 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Xiao, Y. et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat. Med. 22, 906–914 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Wirnsberger, G. et al. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat. Med. 22, 915–923 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Dong, C., Davis, R.J. & Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Wagner, E.F. & Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537–549 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Arthur, J.S. & Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679–692 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Han, M.S. et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339, 218–222 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Bogoyevitch, M.A., Ngoei, K.R., Zhao, T.T., Yeap, Y.Y. & Ng, D.C. c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochim. Biophys. Acta 1804, 463–475 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Davies, C. & Tournier, C. Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem. Soc. Trans. 40, 85–89 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Brown, G.D. Innate antifungal immunity: the key role of phagocytes. Annu. Rev. Immunol. 29, 1–21 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Fujiwara, H. et al. The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc. Natl. Acad. Sci. USA 91, 6835–6839 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Soilleux, E.J., Barten, R. & Trowsdale, J. DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. J. Immunol. 165, 2937–2942 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Mossalayi, M.D. et al. CD23 mediates antimycobacterial activity of human macrophages. Infect. Immun. 77, 5537–5542 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Aubry, J.P. et al. The 25-kDa soluble CD23 activates type III constitutive nitric oxide-synthase activity via CD11b and CD11c expressed by human monocytes. J. Immunol. 159, 614–622 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Lecoanet-Henchoz, S. et al. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 3, 119–125 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Vouldoukis, I. et al. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway. PLoS One 6, e18289 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Vouldoukis, I. et al. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the FcɛRII/CD23 surface antigen. Proc. Natl. Acad. Sci. USA 92, 7804–7808 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Rambert, J. et al. Molecular blocking of CD23 supports its role in the pathogenesis of arthritis. PLoS One 4, e4834 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35

    Wirnsberger, G. et al. Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nat. Genet. 46, 1028–1033 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Underhill, D.M., Rossnagle, E., Lowell, C.A. & Simmons, R.M. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543–2550 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Vonk, A.G., Wieland, C.W., Netea, M.G. & Kullberg, B.J. Phagocytosis and intracellular killing of Candida albicans blastoconidia by neutrophils and macrophages: a comparison of different microbiological test systems. J. Microbiol. Methods 49, 55–62 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Romero-Puertas, M.C. & Sandalio, L.M. Nitric oxide level is self-regulating and also regulates its ROS partners. Front. Plant Sci. 7, 316 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Debnath, I., Roundy, K.M., Weis, J.J. & Weis, J.H. Defining in vivo transcription factor complexes of the murine CD21 and CD23 genes. J. Immunol. 178, 7139–7150 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Kneitz, C. et al. The CD23b promoter is a target for NF-AT transcription factors in B-CLL cells. Biochim. Biophys. Acta 1588, 41–47 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Goodridge, H.S., Simmons, R.M. & Underhill, D.M. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J. Immunol. 178, 3107–3115 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Zanoni, I. & Granucci, F. Regulation and dysregulation of innate immunity by NFAT signaling downstream of pattern recognition receptors (PRRs). Eur. J. Immunol. 42, 1924–1931 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Bennett, B.L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Lalaoui, N. et al. Targeting p38 or MK2 enhances the anti-leukemic activity of Smac-mimetics. Cancer Cell 29, 145–158 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Weston, C.R. & Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142–149 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Ersland, K., Wüthrich, M. & Klein, B.S. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi. Cell Host Microbe 7, 474–487 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657–670 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Zhao, X.Q. et al. C-type lectin receptor dectin-3 mediates trehalose 6,6′-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J. Biol. Chem. 289, 30052–30062 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Jia, X.M. et al. CARD9 mediates dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J. Exp. Med. 211, 2307–2321 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Sato, K. et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J. Biol. Chem. 281, 38854–38866 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Flach, T.L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17, 479–487 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Hu, Y. Shang and L. Ni for helpful discussion. We thank X. Xu, L. Mu, S. Xie and T. Xia for technical assistance. We thank D.C. Lin for editing the English in this manuscript. This work was partially supported by grants from the National Natural Science Foundation of China (81502460 and 31670904 to X.Z., 91542107 and 81630058 to X.L., 81571611 to X.J.) and National Institutes of Health (AI116722 to X.L.).

Author information

Affiliations

Authors

Contributions

X.Z. and Y.G. performed most of the experiments. C.J. and T.L. performed some of the mouse experiments. Q.C. and S.Z. performed some of the in vitro experiments. B.Z. analyzed the RNA–seq data and helped prepare the figures. X.J., M.-C.H. and C.D. provided key reagents and insightful discussion. X.L. and X.Z. conceived the project and wrote the manuscript.

Corresponding authors

Correspondence to Xueqiang Zhao or Xin Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Table

Supplementary Figures 1–10 and Supplementary Tables 1 and 2 (PDF 5182 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Guo, Y., Jiang, C. et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat Med 23, 337–346 (2017). https://doi.org/10.1038/nm.4260

Download citation

Further reading