PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression

Subjects

Abstract

Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome1. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC—an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes—is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors2. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve3. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine–threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Loss of PIM1 induces synthetic lethality with MYC activation in a model human mammary epithelial cell system.
Figure 2: PIM1 expression is disproportionally increased in human primary TN tumor samples and is associated with poor clinical outcomes in patients with HR-negative breast cancer.
Figure 3: TNBC cells with increased MYC expression are sensitive to PIM kinase inhibition in vitro and in vivo.
Figure 4: The growth suppressive effects of PIM inhibition on TN tumors involve both loss of MYC function and gain of p27 function.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. 1

    Foulkes, W.D., Smith, I.E. & Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    CAS  PubMed  Google Scholar 

  2. 2

    Horiuchi, D. et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J. Exp. Med. 209, 679–696 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Prochownik, E.V. & Vogt, P.K. Therapeutic targeting of Myc. Genes Cancer 1, 650–659 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Kaelin, W.G. Jr . The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    CAS  PubMed  Google Scholar 

  5. 5

    Mukhopadhyay, R. et al. Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies. Breast Cancer Res. 12, R11 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Littlewood, T.D., Hancock, D.C., Danielian, P.S., Parker, M.G. & Evan, G.I. A modified estrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Kessler, J.D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012).

    CAS  PubMed  Google Scholar 

  8. 8

    Sato, M. et al. MYC is a critical target of FBXW7. Oncotarget 6, 3292–3305 (2015).

    PubMed  Google Scholar 

  9. 9

    Bazarov, A.V. et al. Telomerase activation by c-MYC in human mammary epithelial cells requires additional genomic changes. Cell Cycle 8, 3373–3378 (2009).

    CAS  PubMed  Google Scholar 

  10. 10

    Nawijn, M.C., Alendar, A. & Berns, A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat. Rev. Cancer 11, 23–34 (2011).

    CAS  PubMed  Google Scholar 

  11. 11

    Mikkers, H. et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol. Cell. Biol. 24, 6104–6115 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    van Lohuizen, M. et al. Predisposition to lymphomagenesis in Pim1 transgenic mice: cooperation with c-Myc and N-Myc in murine leukemia virus–induced tumors. Cell 56, 673–682 (1989).

    CAS  PubMed  Google Scholar 

  13. 13

    Wang, J. et al. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene 29, 2477–2487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Wang, J. et al. Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene 31, 1794–1803 (2012).

    CAS  PubMed  Google Scholar 

  15. 15

    Kirschner, A.N. et al. PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J. Natl. Cancer Inst. 107, dju407 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Xie, Y. et al. The 44-kDa Pim-1 kinase directly interacts with tyrosine kinase ETK (BMX) and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene 25, 70–78 (2006).

    CAS  PubMed  Google Scholar 

  17. 17

    Malinen, M. et al. Proto-oncogene PIM1 is a novel estrogen receptor target associating with high-grade breast tumors. Mol. Cell. Endocrinol. 365, 270–276 (2013).

    CAS  PubMed  Google Scholar 

  18. 18

    Chen, L.S., Redkar, S., Bearss, D., Wierda, W.G. & Gandhi, V. Pim kinase inhibitor SGI-1776 induces apoptosis in chronic lymphocytic leukemia cells. Blood 114, 4150–4157 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    DeRose, Y.S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Lu, J. et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood 122, 1610–1620 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Burger, M.T. et al. Identification of N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a potent and selective proviral insertion site of Moloney murine leukemia (PIM) 1, 2 and 3 kinase inhibitor in clinical trials for hematological malignancies. J. Med. Chem. 58, 8373–8386 (2015).

    CAS  PubMed  Google Scholar 

  22. 22

    D'Cruz, C.M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat. Med. 7, 235–239 (2001).

    CAS  PubMed  Google Scholar 

  23. 23

    Zhang, Y., Wang, Z., Li, X. & Magnuson, N.S. Pim-kinase-dependent inhibition of c-Myc degradation. Oncogene 27, 4809–4819 (2008).

    CAS  PubMed  Google Scholar 

  24. 24

    Sears, R.C. The life cycle of c-Myc: from synthesis to degradation. Cell Cycle 3, 1133–1137 (2004).

    CAS  PubMed  Google Scholar 

  25. 25

    Zhang, Y., Wang, Z. & Magnuson, N.S. Pim-1-kinase-dependent phosphorylation of p21Cip1 (WAF1) regulates its stability and cellular localization in H1299 cells. Mol. Cancer Res. 5, 909–922 (2007).

    CAS  PubMed  Google Scholar 

  26. 26

    Morishita, D., Katayama, R., Sekimizu, K., Tsuruo, T. & Fujita, N. Pim kinases promote cell cycle progression by phosphorylating and downregulating p27Kip1 at the transcriptional and post-transcriptional levels. Cancer Res. 68, 5076–5085 (2008).

    CAS  PubMed  Google Scholar 

  27. 27

    Bachmann, M. et al. The oncogenic serine–threonine kinase Pim-1 directly phosphorylates and activates the G2/M-specific phosphatase Cdc25C. Int. J. Biochem. Cell Biol. 38, 430–443 (2006).

    CAS  PubMed  Google Scholar 

  28. 28

    Mochizuki, T. et al. Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J. Biol. Chem. 274, 18659–18666 (1999).

    CAS  PubMed  Google Scholar 

  29. 29

    Yan, B. et al. The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death. J. Biol. Chem. 278, 45358–45367 (2003).

    CAS  PubMed  Google Scholar 

  30. 30

    Fox, C.J. et al. The serine–threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev. 17, 1841–1854 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Wang, X. et al. Phosphorylation regulates c-Myc's oncogenic activity in the mammary gland. Cancer Res. 71, 925–936 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. & Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    CAS  PubMed  Google Scholar 

  33. 33

    Brasó-Maristany, F. et al. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat. Med. 22, 1303–1313 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Mohanty, A.R. et al. Successive phosphorylation of p27KIP1 protein at Ser10 and C terminus crucially controls its potency to inactivate Cdk2. J. Biol. Chem. 287, 21757–21764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Fujita, N., Sato, S., Katayama, K. & Tsuruo, T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem. 277, 28706–28713 (2002).

    CAS  PubMed  Google Scholar 

  36. 36

    Czabotar, P.E., Lessene, G., Strasser, A. & Adams, J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    CAS  PubMed  Google Scholar 

  37. 37

    Chu, I.M., Hengst, L. & Slingerland, J.M. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat. Rev. Cancer 8, 253–267 (2008).

    CAS  PubMed  Google Scholar 

  38. 38

    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature 490, 61–70 (2012).

  39. 39

    Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    CAS  PubMed  Google Scholar 

  40. 40

    Bazarov, A.V. et al. p16INK4a-mediated suppression of telomerase in normal and malignant human breast cells. Aging Cell 9, 736–746 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Yau, C. et al. A multigene predictor of metastatic outcome in early-stage hormone-receptor-negative and triple-negative breast cancer. Breast Cancer Res. 12, R85 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Esserman, L.J. et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res. Treat. 132, 1049–1062 (2012).

    CAS  PubMed  Google Scholar 

  43. 43

    Hatzis, C. et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. J. Am. Med. Assoc. 305, 1873–1881 (2011).

    CAS  Google Scholar 

  44. 44

    Davis, S. & Meltzer, P.S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847 (2007).

    PubMed  Google Scholar 

  45. 45

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Langfelder, P. & Horvath, S. Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw. 46, i11 (2012).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Wickham, H. ggplot2 (Springer Science and Business Media, 2009).

  48. 48

    Therneau, T.M. Modeling Survival Data: Extending the Cox Model (Springer Science and Business Media, 2000).

  49. 49

    Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Chen, L.S., Redkar, S., Taverna, P., Cortes, J.E. & Gandhi, V. Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood 118, 693–702 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Garcia, P.D. et al. Pan–PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin. Cancer Res. 20, 1834–1845 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the US National Institutes of Health (K99CA175700 (D.H.), R00CA175700 (D.H.), 5T32DK007418 (R.C.), K99CA181490 (K.K.), ES019458 (P.Y. and Z.W.), U01CA168370 (M.T.M.), P30DK63720 (M.T.M.), R01CA180039 (Z.W.) and R01CA170447 (A.G.)), the Susan G. Komen Foundation (PDF15331114; J.R.), the UCSF Program for Breakthrough Biomedical Research (M.T.M.), an Innovative, Developmental, and Exploratory Award from the California Breast Cancer Research Program (17lB-0024; A.G.), an Era of Hope Scholar Award from the CDMRP Breast Cancer Research Program (W81XWH-12-1-0272 and W81XWH-16-1-0603; both to A.G.), an LLS Scholar Award (A.G.), a V-Foundation Award (A.G.), the Breast Cancer Research Foundation (H.S.R. and A.G.) and the Northwestern Medicine Catalyst Funds (D.H.). The authors thank A. Welm for her guidance with the use of the patient-derived orthotopic tumor xenograft models, J.W. Smyth for his assistance with the generation of the transgenic breast cancer cell lines, and D.B. Udy, C.L. Hueschen and A. Vasilopoulos for their assistance with microscopy. We thank S. Samson, C. Baas, H. Klein-Connolly and D. Roth for consumer advocacy support and feedback related to this project, and J.M. Bishop for his insights into the project and his mentorship to D.H.

Author information

Affiliations

Authors

Contributions

D.H. and A.G. conceived the project; D.H. designed and executed the shRNA screen and the subsequent biological experiments, analyzed the data and wrote the manuscript; A.V.B., M.T.M. and P.Y. provided materials for, and contributed to, designing and executing the screen; C.Y. and S.B. performed bioinformatics analyses; D.A.L., H.S.R. and Z.W. provided materials for, and contributed to, designing and executing the animal experiments involving the patient-derived orthotopic tumor xenografts; R.C., A.Y.Z., A.N.C., H.E., K.K., L.A.M., B.N.A., J.R. and R.K. contributed to executing the biological experiments; R.C., A.Y.Z., C.Y., S.B., L.A.M., B.N.A., P.Y., Z.W., O.M. and A.G. participated in the writing of the manuscript; and A.G. supervised the project.

Corresponding authors

Correspondence to Dai Horiuchi or Andrei Goga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text, Figures and Tables

Suppplementary Tables 1–2 and Supplementary Figures 1–21 (PDF 11674 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horiuchi, D., Camarda, R., Zhou, A. et al. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat Med 22, 1321–1329 (2016). https://doi.org/10.1038/nm.4213

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing