Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1

A Corrigendum to this article was published on 07 June 2016

This article has been updated

Abstract

Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine1. Current dogma suggests that high-energy–consuming photoreceptors depend on glucose2,3. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors4 and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid5,6. In the retinas of Vldlr−/− mice with low fatty acid uptake6 but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr−/− photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr−/− retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD)7, which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Retinal energy deficits are associated with vascular lesions in Vldlr−/− mice.
Figure 2: Dual lipid and glucose fuel deficiency in Vldlr−/− retinas.
Figure 3: Ffar1 modulates retinal glucose uptake and RAP.
Figure 4: Fuel-deficient Vldlr −/− retinas generate less α-KG and more Vegfa.

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 24 March 2016

    In the version of this article initially published online, there were two errors. There was a typographical error in the text, which should have stated that the 'dark current' is an electrochemical gradient required for photon-induced polarization (rather than depolarization, as incorrectly stated). In addition, some funding sources were inadvertently omitted from the Acknowledgments. The errors have been corrected for the print, PDF and HTML versions of this article.

  • 07 June 2016

    Nat. Med.; doi: 10.1038/nm.4059; corrected 24 March 2016 In the version of this article initially published online, there were two errors. There was a typographical error in the text, which should have stated that the 'dark current' is an electrochemical gradient required for photon-induced polarization (rather than depolarization, as incorrectly stated).

References

  1. 1

    Cahill, G.F. Jr. Starvation in man. N. Engl. J. Med. 282, 668–675 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Wong-Riley, M.T.T. Energy metabolism of the visual system. Eye Brain 2, 99–116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Cohen, L.H. & Noell, W.K. Glucose catabolism of rabbit retina before and after development of visual function. J. Neurochem. 5, 253–276 (1960).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Dorrell, M.I. et al. Antioxidant or neurotrophic factor treatment preserves function in a mouse model of neovascularization-associated oxidative stress. J. Clin. Invest. 119, 611–623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Niu, Y.-G. & Evans, R.D. Very-low-density lipoprotein: complex particles in cardiac energy metabolism. J. Lipids 2011, 189876 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Goudriaan, J.R. et al. The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis. J. Lipid Res. 45, 1475–1481 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Bottoni, F. et al. Treatment of retinal angiomatous proliferation in age-related macular degeneration: a series of 104 cases of retinal angiomatous proliferation. Arch. Ophthalmol. 123, 1644–1650 (2005).

    Article  PubMed  Google Scholar 

  8. 8

    Yannuzzi, L.A. et al. Idiopathic macular telangiectasia. 2006. Retina 32 (suppl. 1), 450–460 (2012).

    Article  PubMed  Google Scholar 

  9. 9

    Lim, L.S., Mitchell, P., Seddon, J.M., Holz, F.G. & Wong, T.Y. Age-related macular degeneration. Lancet 379, 1728–1738 (2012).

    Article  PubMed  Google Scholar 

  10. 10

    Okawa, H., Sampath, A.P., Laughlin, S.B. & Fain, G.L. ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr. Biol. 18, 1917–1921 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Mantych, G.J., Hageman, G.S. & Devaskar, S.U. Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology 133, 600–607 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Gospe, S.M. III, Baker, S.A. & Arshavsky, V.Y. Facilitative glucose transporter Glut1 is actively excluded from rod outer segments. J. Cell Sci. 123, 3639–3644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Klepper, J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia 49 (suppl. 8), 46–49 (2008).

    Article  PubMed  Google Scholar 

  14. 14

    Lopaschuk, G.D., Ussher, J.R., Folmes, C.D.L., Jaswal, J.S. & Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90, 207–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Obunike, J.C. et al. Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very-low-density lipoprotein receptor. J. Biol. Chem. 276, 8934–8941 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Tyni, T., Paetau, A., Strauss, A.W., Middleton, B. & Kivelä, T. Mitochondrial fatty acid β-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl–CoA dehydrogenase deficiency. Pediatr. Res. 56, 744–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Sarac, O., Gulsuner, S., Yildiz-Tasci, Y., Ozcelik, T. & Kansu, T. Neuro-ophthalmologic findings in humans with quadrupedal locomotion. Ophthalmic Genet. 33, 249–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Trick, G.L. & Berkowitz, B.A. Retinal oxygenation response and retinopathy. Prog. Retin. Eye Res. 24, 259–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Furukawa, T., Morrow, E.M. & Cepko, C.L. Crx, a novel Otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Winkler, B.S. Glycolytic and oxidative metabolism in relation to retinal function. J. Gen. Physiol. 77, 667–692 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Hu, W. et al. Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout-mouse model's retinal angiomatous proliferation. Invest. Ophthalmol. Vis. Sci. 49, 407–415 (2008).

    Article  PubMed  Google Scholar 

  22. 22

    Lefebvre, P., Chinetti, G., Fruchart, J.-C. & Staels, B. Sorting out the roles of PPAR-α in energy metabolism and vascular homeostasis. J. Clin. Invest. 116, 571–580 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Nakamura, M.T., Yudell, B.E. & Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 53, 124–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422, 173–176 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Kebede, M. et al. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57, 2432–2437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Alquier, T. et al. Deletion of Gpr40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes 58, 2607–2615 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Steneberg, P., Rubins, N., Bartoov-Shifman, R., Walker, M.D. & Edlund, H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis and impaired glucose homeostasis in mouse. Cell Metab. 1, 245–258 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Honoré, J.-C. et al. Fatty acid receptor Gpr40 mediates neuromicrovascular degeneration induced by transarachidonic acids in rodents. Arterioscler. Thromb. Vasc. Biol. 33, 954–961 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Briscoe, C.P. et al. The orphan G protein–coupled receptor GPR40 is activated by medium- and long-chain fatty acids. J. Biol. Chem. 278, 11303–11311 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Naik, H. et al. Safety, tolerability, pharmacokinetics and pharmacodynamic properties of the GPR40 agonist TAK-875: results from a double-blind, placebo-controlled single-oral-dose rising study in healthy volunteers. J. Clin. Pharmacol. 52, 1007–1016 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Kaelin, W.G. Jr. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate–dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 76, 335–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Ohno-Matsui, K. et al. Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am. J. Pathol. 160, 711–719 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Zhou, X., Wong, L.L., Karakoti, A.S., Seal, S. & McGinnis, J.F. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr-knockout mouse. PLoS One 6, e16733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Chen, Y. et al. Photoreceptor degeneration and retinal inflammation induced by very-low-density lipoprotein receptor deficiency. Microvasc. Res. 78, 119–127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Fletcher, A.L., Pennesi, M.E., Harding, C.O., Weleber, R.G. & Gillingham, M.B. Observations regarding retinopathy in mitochondrial trifunctional protein deficiencies. Mol. Genet. Metab. 106, 18–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Keech, A.C. et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomized controlled trial. Lancet 370, 1687–1697 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Ferrannini, E., Barrett, E.J., Bevilacqua, S. & DeFronzo, R.A. Effect of fatty acids on glucose production and utilization in man. J. Clin. Invest. 72, 1737–1747 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Wauson, E.M., Lorente-Rodríguez, A. & Cobb, M.H. Minireview: nutrient sensing by G protein–coupled receptors. Mol. Endocrinol. 27, 1188–1197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324, 261–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, Washington, D.C., 2011).

  42. 42

    Stahl, A. et al. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am. J. Pathol. 177, 2715–2723 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Stahl, A. et al. Computer-aided quantification of retinal neovascularization. Angiogenesis 12, 297–301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Deerinck, T.J. et al. Enhancing serial block-face scanning electron microscopy to enable high-resolution 3D nanohistology of cells and tissues. Microsc. Microanal. 16, 1138–1139 (2010).

    Article  CAS  Google Scholar 

  45. 45

    Spahis, S. et al. Plasma fatty acid composition in French-Canadian children with non-alcoholic fatty liver disease: effect of n-3 PUFA supplementation. Prostaglandins Leukot. Essent. Fatty Acids 99, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Calvano, S.E. et al. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Townsend, M.K. et al. Reproducibility of metabolomic profiles among men and women in two large cohort studies. Clin. Chem. 59, 1657–1667 (2013).

    Article  CAS  Google Scholar 

  49. 49

    al-Ubaidi, M.R. et al. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J. Cell Biol. 119, 1681–1687 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Tan, E. et al. Expression of cone-photoreceptor–specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci. 45, 764–768 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Park, Y.K. et al. AsiDesigner: exon-based siRNA design server considering alternative splicing. Nucleic Acids Res. 36, W97–103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Grieger, J.C., Choi, V.W. & Samulski, R.J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1, 1412–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Khani, S.C. et al. AAV-mediated expression targeting of rod and cone photoreceptors with a human rhodopsin kinase promoter. Invest. Ophthalmol. Vis. Sci. 48, 3954–3961 (2007).

    Article  PubMed  Google Scholar 

  54. 54

    Vandenberghe, L.H. et al. Efficient serotype-dependent release of functional vector into the culture medium during adeno-associated virus manufacturing. Hum. Gene Ther. 21, 1251–1257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) grants EY024864 (L.E.H.S.), EY017017 (L.E.H.S.), EY022275 (L.E.H.S.), P01 HD18655 (L.E.H.S.) and EY024963 (J.C.) and EY11254 (Friedlander), the Lowy Medical Research Institute (M. Friedlander, L.E.H.S. and M. Fruttiger), the European Commission FP7 project 305485 PREVENT-ROP (L.E.H.S.), a Burroughs Wellcome Fund Career Award for Medical Scientists (J.-S.J.), the Foundation Fighting Blindness (J.-S.J.), the Canadian Institute of Health Research (CIHR) grant 143077 (J.-S.J.), the Fonds de Recherche du Québec–Santé (FRQS) (J.-S.J.), the Canadian Child Health Clinician Scientist Program (J.-S.J.), a CIHR New Investigator Award (J.-S.J.), the Knights Templar Eye Foundation (Z.F.), the Bernadotte Foundation (Z.F.), the Canada Research chair and CIHR grant 221478 (P.S.), the Boston Children's Hospital Ophthalmology Foundation (J.C.), a Boston Children's Hospital Faculty Career Development Award (J.C.), the Bright Focus Foundation (J.C.) and the Massachussetts Lions Eye Research Fund, Inc. (J.C.). We thank M. Puder and P. Nandivada (Harvard Medical School, Boston Children's Hospital) for sharing the Ffar1−/− mice; M. Al-Ubaidi (University of Oklahoma) for sharing the 661W photoreceptor cells; Z. Lin and W.T. Pu (Harvard Medical School, Boston Children's Hospital) for sharing a modified CAG-GFP-miR30 construct; and C. Cepko (Harvard Medical School) and T. Li (National Eye Institute) for providing the pAAV-RK-GFP vector.

Author information

Affiliations

Authors

Contributions

J.-S.J. and L.E.H.S. conceived and designed all experiments, and wrote the manuscript; and J.-S.J., Y.S., Z.S., L.P.E., N.S., T.F., S.B., J.S.K., G.P., A.M.J., C.G.H., C.J.H., Z.C. and Z.F. performed all in vivo and ex vivo experiments, except for those indicated below. M.L.G., E.A. and M. Friedlander performed and analyzed the Seahorse experiments; K.A.P. and C.B.C. performed and analyzed the metabolite profiling; P.B. and B.M. performed and analyzed fatty acid β-oxidation; M.B.P., K.V. and M. Fruttiger performed and analyzed 3D SEM; M.B. and E.L. analyzed lipid composition of plasma; F.A.R. collected human vitreous samples; P.S. measured human vitreous VEGF levels; C.B.C., M. Friedlander, J.C., P.S., B.M., F.A.R., A.P., M. Fruttiger and E.L. provided expert advice. All of the authors analyzed the data.

Corresponding authors

Correspondence to Jean-Sébastien Joyal or Lois E H Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–2 (PDF 10547 kb)

WT photoreceptor mitochondria.

Video of pseudo-colored mitochondria in WT photoreceptors by 3D reconstruction of scanning electron microscopy (MOV 4894 kb)

Vldlr−/− photoreceptor mitochondria.

Video of pseudo-colored mitochondria in Vldlr−/− photoreceptors by 3D reconstruction of scanning electron microscopy. A vascular lesion (center) is pseudocoloured in green. (MOV 15200 kb)

Ffar1 dictates glucose uptake in Vldlr−/− retina.

[18F]FDG microPET / CT scan comparing glucose uptake simultaneously in WT (left), Vldlr−/− (middle left), Vldlr−/− /Ffar1−/− (middle right) and Ffar1−/− mice (right) (MPG 982 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joyal, JS., Sun, Y., Gantner, M. et al. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med 22, 439–445 (2016). https://doi.org/10.1038/nm.4059

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing