Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical translation of a high-performance neural prosthesis


Neural prostheses have the potential to improve the quality of life of individuals with paralysis by directly mapping neural activity to limb- and computer-control signals. We translated a neural prosthetic system previously developed in animal model studies for use by two individuals with amyotrophic lateral sclerosis who had intracortical microelectrode arrays placed in motor cortex. Measured more than 1 year after implant, the neural cursor-control system showed the highest published performance achieved by a person to date, more than double that of previous pilot clinical trial participants.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of neural control performance for participants S3, T6 and T7.
Figure 2: Comparison of VKF and ReFIT neural control performance for T6 and T7.


  1. 1

    Hochberg, L.R. et al. Nature 485, 372–375 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Hochberg, L.R. et al. Nature 442, 164–171 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Collinger, J.L. et al. Lancet 381, 557–564 (2013).

    Article  Google Scholar 

  4. 4

    Aflalo, T. et al. Science 348, 906–910 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Wolpaw, J.R. & McFarland, D.J. Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Wang, W. et al. PLoS ONE 8, e55344 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R. & Donoghue, J.P. Nature 416, 141–142 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S. & Schwartz, A.B. Nature 453, 1098–1101 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Taylor, D.M., Tillery, S.I. & Schwartz, A.B. Science 296, 1829–1832 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Carmena, J.M. et al. PLoS Biol. 1, e42 (2003).

    Article  Google Scholar 

  11. 11

    Ganguly, K. & Carmena, J.M. PLoS Biol. 7, e1000153 (2009).

    Article  Google Scholar 

  12. 12

    Suminski, A.J., Tkach, D.C., Fagg, A.H. & Hatsopoulos, N.G. J. Neurosci. 30, 16777–16787 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Mulliken, G.H., Musallam, S. & Andersen, R.A. J. Neurosci. 28, 12913–12926 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Bensmaia, S.J. & Miller, L.E. Nat. Rev. Neurosci. 15, 313–325 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Gilja, V. et al. Nat. Neurosci. 15, 1752–1757 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Sussillo, D. et al. J. Neural Eng. 9, 026027 (2012).

    Article  Google Scholar 

  17. 17

    Simeral, J.D., Kim, S.P., Black, M.J., Donoghue, J.P. & Hochberg, L.R. J. Neural Eng. 8, 025027 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Cunningham, J.P. et al. J. Neurophysiol. 105, 1932–1949 (2011).

    Article  Google Scholar 

  19. 19

    Perge, J.A. et al. J. Neural Eng. 11, 046007 (2014).

    Article  Google Scholar 

  20. 20

    Quian Quiroga, R. J. Neurosci. Methods 177, 194–198 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Masse, N.Y. et al. J. Neurosci. Methods 236, 58–67 (2014).

    Article  Google Scholar 

  22. 22

    Fraser, G.W., Chase, S.M., Whitford, A. & Schwartz, A.B. J. Neural Eng. 6, 055004 (2009).

    Article  Google Scholar 

  23. 23

    Christie, B.P. et al. J. Neural Eng. 12, 016009 (2015).

    Article  Google Scholar 

  24. 24

    Bacher, D. et al. Neurorehabil. Neural Repair 29, 462–471 (2015).

    Article  Google Scholar 

  25. 25

    Ward, D.J. & MacKay, D.J. Nature 418, 838 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Kim, S.P., Simeral, J.D., Hochberg, L.R., Donoghue, J.P. & Black, M.J. J. Neural Eng. 5, 455–476 (2008).

    Article  Google Scholar 

  27. 27

    Jarosiewicz, B. et al. J. Neural Eng. 10, 046012 (2013).

    Article  Google Scholar 

  28. 28

    Kim, S.-P. et al. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 193–203 (2011).

    Article  Google Scholar 

  29. 29

    Pelli, D.G. Spat. Vis. 10, 437–442 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Brainard, D.H. Spat. Vis. 10, 433–436 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Chestek, C.A. et al. J. Neural Eng. 10, 026002 (2013).

    Article  Google Scholar 

Download references


The authors would like to thank participants T6, T7, S3 and their families; E.N. Eskandar for participant T7's implantation surgery; B. Davis, B. Pedrick, M. Coburn, B. Travers and D. Rosler for administrative support; S.I. Ryu for surgical assistance; L. Barefoot, P. Gigante, A. Sachs, S. Cash, J. Menon and S. Mernoff for clinical assistance; K. Newell for data collection assistance; J. Saab and N. Schmansky for technical assistance; and J.P. Donoghue for helpful scientific discussions. This work was supported by the Stanford Institute for Neuro-Innovation and Translational Neuroscience; Stanford BioX-NeuroVentures; the Stanford Office of Postdoctoral Affairs; the Garlick Foundation; the Craig H. Neilsen Foundation; The US National Institutes of Health: the National Institute on Deafness and Other Communication Disorders (NIDCD) (R01DC009899, principal investigator (PI): L.R.H.; R01DC014034, PI: J.M.H.), the National Institute of Neurological Disorders and Stroke (NINDS) (RO1NS066311-S1, PI: K.V.S.), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)-National Center for Medical Rehabilitation Research (NCMRR) (N01HD53403 and N01HD10018, Sub-award PI: L.R.H.); the Rehabilitation Research and Development Service, Department of Veterans Affairs (B6453R and B6310N, PI: L.R.H.); and the Massachusetts General Hospital (MGH)-Deane Institute for Integrated Research on Atrial Fibrillation and Stroke. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health, the Department of Veterans Affairs or the United States Government.

Author information




V.G. and C.P. were responsible for study design, further guided by K.V.S., J.M.H. and L.R.H. V.G. and C.P. were responsible for research infrastructure development, data collection, analysis, algorithm design and manuscript preparation. All authors contributed to the manuscript. P.N. and B.J. contributed to infrastructure development and algorithm design. C.H.B. and B.L.S. contributed to the data collection effort from study participants T6 and T7, respectively. C.H.B. participated in study design. A.A.S. and J.D.S. contributed to infrastructure development. J.D.S. provided data from subject S3. J.A.P. and B.J. conducted offline analyses to inform algorithm design. J.M.H. was responsible for surgical implantation for study participant T6. L.R.H. is the sponsor-investigator of the multi-site pilot clinical trial. J.M.H. and K.V.S. were involved in all aspects of the study.

Corresponding author

Correspondence to Jaimie M Henderson.

Ethics declarations

Competing interests

This work relates to patent US 8792976.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gilja, V., Pandarinath, C., Blabe, C. et al. Clinical translation of a high-performance neural prosthesis. Nat Med 21, 1142–1145 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing