Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure

Abstract

Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein–coupled receptor–dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II–induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II–induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Loss of Nogo-A and Nogo-B upregulates eNOS-NO and flow-mediated vasodilation, leading to hypotension.
Figure 2: Nogo-B is a negative regulator of sphingolipid de novo biosynthesis.
Figure 3: Nogo-B regulates sphingolipid de novo biosynthesis to affect blood pressure through S1P-S1P1 signaling.
Figure 4: Lack of Nogo-A/B protects mice from AngII-induced hypertension and endothelial dysfunction.
Figure 5: Lack of endothelial Nogo-B protects mice from AngII-induced hypertension and endothelial dysfunction.
Figure 6: Endothelial Nogo-B is a critical mediator of hypertension and vascular dysfunction through negative regulation of sphingolipid de novo biosynthesis.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. 1

    Kearney, P.M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    PubMed  Google Scholar 

  2. 2

    Vanhoutte, P.M. Endothelial dysfunction in hypertension. J. Hypertens. Suppl. 14, S83–S93 (1996).

    CAS  PubMed  Google Scholar 

  3. 3

    Taddei, S. & Salvetti, A. Pathogenetic factors in hypertension. Endothelial factors. Clin. Exp. Hypertens. 18, 323–335 (1996).

    CAS  PubMed  Google Scholar 

  4. 4

    Taddei, S. et al. Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94, 1298–1303 (1996).

    CAS  PubMed  Google Scholar 

  5. 5

    Huang, P.L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).

    CAS  PubMed  Google Scholar 

  6. 6

    Haynes, W.G., Noon, J.P., Walker, B.R. & Webb, D.J. L-NMMA increases blood pressure in man. Lancet 342, 931–932 (1993).

    CAS  PubMed  Google Scholar 

  7. 7

    Aisaka, K., Gross, S.S., Griffith, O.W. & Levi, R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem. Biophys. Res. Commun. 160, 881–886 (1989).

    CAS  PubMed  Google Scholar 

  8. 8

    Dantas, A.P., Igarashi, J. & Michel, T. Sphingosine 1-phosphate and control of vascular tone. Am. J. Physiol. Heart Circ. Physiol. 284, H2045–H2052 (2003).

    CAS  PubMed  Google Scholar 

  9. 9

    Igarashi, J. & Michel, T. S1P and eNOS regulation. Biochim. Biophys. Acta 1781, 489–495 (2008).

    CAS  PubMed  Google Scholar 

  10. 10

    Salomone, S. et al. S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur. J. Pharmacol. 469, 125–134 (2003).

    CAS  PubMed  Google Scholar 

  11. 11

    Coussin, F., Scott, R.H., Wise, A. & Nixon, G.F. Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles: differential role in vasoconstriction. Circ. Res. 91, 151–157 (2002).

    CAS  PubMed  Google Scholar 

  12. 12

    Venkataraman, K. et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102, 669–676 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Hänel, P., Andreani, P. & Graler, M.H. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J. 21, 1202–1209 (2007).

    PubMed  Google Scholar 

  14. 14

    Camerer, E. et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J. Clin. Invest. 119, 1871–1879 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Young, R.M. et al. Zebrafish yolk-specific not really started (nrs) gene is a vertebrate homolog of the Drosophila spinster gene and is essential for embryogenesis. Dev. Dyn. 223, 298–305 (2002).

    CAS  PubMed  Google Scholar 

  16. 16

    Tauseef, M. et al. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ. Res. 103, 1164–1172 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Jung, B. et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev. Cell 23, 600–610 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Nagiec, M.M., Baltisberger, J.A., Wells, G.B., Lester, R.L. & Dickson, R.C. The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc. Natl. Acad. Sci. USA 91, 7899–7902 (1994).

    CAS  PubMed  Google Scholar 

  19. 19

    Hanada, K. et al. Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids. J. Biol. Chem. 267, 23527–23533 (1992).

    CAS  PubMed  Google Scholar 

  20. 20

    Breslow, D.K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Han, S., Lone, M.A., Schneiter, R. & Chang, A. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl. Acad. Sci. USA 107, 5851–5856 (2010).

    CAS  PubMed  Google Scholar 

  22. 22

    Moffatt, M.F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    CAS  PubMed  Google Scholar 

  23. 23

    Kim, J.E., Li, S., GrandPre, T., Qiu, D. & Strittmatter, S.M. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 38, 187–199 (2003).

    CAS  PubMed  Google Scholar 

  24. 24

    Zheng, B. et al. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38, 213–224 (2003).

    CAS  PubMed  Google Scholar 

  25. 25

    Acevedo, L. et al. A new role for Nogo as a regulator of vascular remodeling. Nat. Med. 10, 382–388 (2004).

    CAS  PubMed  Google Scholar 

  26. 26

    Beverelli, F., Bea, M.L., Puybasset, L., Giudicelli, J.F. & Berdeaux, A. Chronic inhibition of NO synthase enhances the production of prostacyclin in coronary arteries through upregulation of the cyclooxygenase type 1 isoform. Fundam. Clin. Pharmacol. 11, 252–259 (1997).

    CAS  PubMed  Google Scholar 

  27. 27

    Davies, P.F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Bevan, J.A. & Henrion, D. Pharmacological implications of the flow-dependence of vascular smooth muscle tone. Annu. Rev. Pharmacol. Toxicol. 34, 173–190 (1994).

    CAS  PubMed  Google Scholar 

  29. 29

    Jozsef, L. et al. Reticulon 4 is necessary for endoplasmic reticulum tubulation, STIM1-ORAI1 coupling, and store-operated calcium entry. J. Biol. Chem. 289, 9380–9395 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Igarashi, J. & Michel, T. Agonist-modulated targeting of the EDG-1 receptor to plasmalemmal caveolae. eNOS activation by sphingosine 1-phosphate and the role of caveolin-1 in sphingolipid signal transduction. J. Biol. Chem. 275, 32363–32370 (2000).

    CAS  PubMed  Google Scholar 

  31. 31

    Mesicek, J. et al. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell. Signal. 22, 1300–1307 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Pewzner-Jung, Y. et al. A critical role for ceramide synthase 2 in liver homeostasis: II. insights into molecular changes leading to hepatopathy. J. Biol. Chem. 285, 10911–10923 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Bolz, S.S. et al. Sphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase. Circulation 108, 342–347 (2003).

    CAS  PubMed  Google Scholar 

  34. 34

    Hanada, K., Nishijima, M., Fujita, T. & Kobayashi, S. Specificity of inhibitors of serine palmitoyltransferase (SPT), a key enzyme in sphingolipid biosynthesis, in intact cells. A novel evaluation system using an SPT-defective mammalian cell mutant. Biochem. Pharmacol. 59, 1211–1216 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Rajagopalan, S. et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916–1923 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Lais, L.T. & Brody, M.J. Vasoconstrictor hyperresponsiveness: an early pathogenic mechanism in the spontaneously hypertensive rat. Eur. J. Pharmacol. 47, 177–189 (1978).

    CAS  PubMed  Google Scholar 

  37. 37

    Tang, K.M. et al. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat. Med. 9, 1506–1512 (2003).

    CAS  PubMed  Google Scholar 

  38. 38

    Wälchli, T. et al. Nogo-A is a negative regulator of CNS angiogenesis. Proc. Natl. Acad. Sci. USA 110, E1943–E1952 (2013).

    PubMed  Google Scholar 

  39. 39

    Butler, T., Paul, J., Europe-Finner, N., Smith, R. & Chan, E.C. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am. J. Physiol. Cell Physiol. 304, C485–C504 (2013).

    CAS  PubMed  Google Scholar 

  40. 40

    Hannun, Y.A. Functions of ceramide in coordinating cellular responses to stress. Science 274, 1855–1859 (1996).

    CAS  PubMed  Google Scholar 

  41. 41

    Celermajer, D.S. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340, 1111–1115 (1992).

    CAS  PubMed  Google Scholar 

  42. 42

    Theilmeier, G. et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114, 1403–1409 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Obinata, H. & Hla, T. Sphingosine 1-phosphate in coagulation and inflammation. Semin. Immunopathol. 34, 73–91 (2012).

    CAS  PubMed  Google Scholar 

  44. 44

    Nofer, J.R. et al. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115, 501–508 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Jiang, X.C., Goldberg, I.J. & Park, T.S. Sphingolipids and cardiovascular diseases: lipoprotein metabolism, atherosclerosis and cardiomyopathy. Adv. Exp. Med. Biol. 721, 19–39 (2011).

    CAS  PubMed  Google Scholar 

  46. 46

    Miao, R.Q. et al. Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc. Natl. Acad. Sci. USA 103, 10997–11002 (2006).

    CAS  PubMed  Google Scholar 

  47. 47

    Rikitake, Y. et al. Involvement of endothelial nitric oxide in sphingosine-1-phosphate-induced angiogenesis. Arterioscler. Thromb. Vasc. Biol. 22, 108–114 (2002).

    CAS  PubMed  Google Scholar 

  48. 48

    Igarashi, J., Miyoshi, M., Hashimoto, T., Kubota, Y. & Kosaka, H. Hydrogen peroxide induces S1P1 receptors and sensitizes vascular endothelial cells to sphingosine 1-phosphate, a platelet-derived lipid mediator. Am. J. Physiol. Cell Physiol. 292, C740–C748 (2007).

    CAS  PubMed  Google Scholar 

  49. 49

    Chun, J. & Hartung, H.P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Cohen, J.A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    CAS  PubMed  Google Scholar 

  51. 51

    Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    CAS  PubMed  Google Scholar 

  52. 52

    Pavoine, C. & Pecker, F. Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovasc. Res. 82, 175–183 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Kempf, A. et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biol. 12, e1001763 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Wright, P.L. et al. Epithelial reticulon 4B (Nogo-B) is an endogenous regulator of Th2-driven lung inflammation. J. Exp. Med. 207, 2595–2607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Zhang, D. et al. Reticulon 4B (Nogo-B) is a novel regulator of hepatic fibrosis. Hepatology 53, 1306–1315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Di Lorenzo, A., Manes, T.D., Davalos, A., Wright, P.L. & Sessa, W.C. Endothelial reticulon-4B (Nogo-B) regulates ICAM-1-mediated leukocyte transmigration and acute inflammation. Blood 117, 2284–2295 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    CAS  PubMed  Google Scholar 

  58. 58

    Bryan, N.S. & Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med. 43, 645–657 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Bielawski, J. et al. Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Adv. Exp. Med. Biol. 688, 46–59 (2010).

    CAS  PubMed  Google Scholar 

  60. 60

    Williams, R.D., Wang, E. & Merrill, A.H. Jr. Enzymology of long-chain base synthesis by liver: characterization of serine palmitoyltransferase in rat liver microsomes. Arch. Biochem. Biophys. 228, 282–291 (1984).

    CAS  PubMed  Google Scholar 

  61. 61

    Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  PubMed  Google Scholar 

  62. 62

    Cao, X. et al. Angiotensin II-dependent hypertension requires cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical organ of the brain. Hypertension 59, 869–876 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by European Cooperation in Science and Technology (COST) Action BM1005 European Network on Gasotransmitters (ENOG) to M.B.; US National Institutes of Health (NIH) R37-HL67330 and R01HL89934 to T.H.; NIH R01HL126913-01, a Harold S. Geneen Charitable Trust Award for Coronary Heart Disease Research and American Heart Association grant 11SDG5710010 to A.D.L.

Author information

Affiliations

Authors

Contributions

A.C. and Y.Z. designed and carried out experiments, analyzed results and contributed to writing the manuscript. M.K. contributed with preparation of WT and Nogo-A/B-deficient MLEC for sphingolipid measurements. H.O. prepared HA-tagged-Nogo-B lentivirus. S.G. performed all the en face mouse aorta preparations, staining and imaging. M.B. helped in designing experiments and interpretation of results. F.J.G. contributed to designing experiments and discussion of results. X.-C. J. contributed to and oversaw the SPT enzymatic assays. T.H. contributed to design of experiments and interpretation of results and provided feedback on the manuscript. A.D.L. designed experiments, interpreted results and wrote the manuscript.

Corresponding author

Correspondence to Annarita Di Lorenzo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 6988 kb)

Supplementary Data 1

Nogo-B effect on vasoconstriction. (XLSX 39 kb)

Supplementary Data 2

Sphingolipid levels in vascular SMC and SPT assay in EC. (XLSX 36 kb)

Supplementary Data 3

Effects of W146 and myriocin on vascular tone regulation. (XLSX 73 kb)

Supplementary Data 4

Nogo-B excision in EC-Nogo-A/B-deficient and SMC-Nogo-A/B-deficient mice. (XLSX 46 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cantalupo, A., Zhang, Y., Kothiya, M. et al. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nat Med 21, 1028–1037 (2015). https://doi.org/10.1038/nm.3934

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing