Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension

Abstract

Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: BMP9 preferentially stimulates human PAECs.
Figure 2: BMP9 prevents apoptosis in human PAECs via BMPR-II.
Figure 3: BMP9 prevents apoptosis and promotes monolayer integrity in BOECs.
Figure 4: Pulmonary hypertension in Bmpr2+/R899X knock-in mice is reversed by BMP9.
Figure 5: BMP9 reverses established monocrotaline-induced pulmonary hypertension and prevents endothelial cell apoptosis in rats.
Figure 6: BMP9 reverses established pulmonary hypertension in the Sugen-hypoxia rat model.

Accession codes

Primary accessions

ArrayExpress

References

  1. 1

    Morrell, N.W. et al. Cellular and molecular basis of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54, S20–S31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Gaine, S.P. & Rubin, L.J. Primary pulmonary hypertension. Lancet 352, 719–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    The International PPH Consortium et al. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26, 81–84 (2000).

  4. 4

    Deng, Z. et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Thomson, J.R. et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family. J. Med. Genet. 37, 741–745 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Atkinson, C. et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105, 1672–1678 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Long, L. et al. Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation 119, 566–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Hong, K.H. et al. Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118, 722–730 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Reynolds, A.M., Holmes, M.D., Danilov, S.M. & Reynolds, P.N. Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur. Respir. J. 39, 329–343 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Reynolds, A.M. et al. Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1182–L1192 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Spiekerkoetter, E. et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Invest. 123, 3600–3613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Trembath, R.C. et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345, 325–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Harrison, R.E. et al. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J. Med. Genet. 40, 865–871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Yeager, M.E., Halley, G.R., Golpon, H.A., Voelkel, N.F. & Tuder, R.M. Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ. Res. 88, E2–E11 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Teichert-Kuliszewska, K. et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ. Res. 98, 209–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Wilson, D.W. et al. Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit. Rev. Toxicol. 22, 307–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Taraseviciene-Stewart, L. et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 15, 427–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Burton, V.J. et al. Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function. Blood 117, 333–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Burton, V.J. et al. Attenuation of leukocyte recruitment via CXCR1/2 inhibition stops the progression of PAH in mice with genetic ablation of endothelial BMPR-II. Blood 118, 4750–4758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Kim, C.W. et al. Anti-Inflammatory and Antiatherogenic Role of BMP Receptor II in Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 33, 1350–1359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Yang, J. et al. Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. Circ. Res. 102, 1212–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Miyazono, K., Maeda, S. & Imamura, T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16, 251–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    David, L., Mallet, C., Mazerbourg, S., Feige, J.J. & Bailly, S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109, 1953–1961 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Scharpfenecker, M. et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J. Cell Sci. 120, 964–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    David, L. et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ. Res. 102, 914–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Frank, D.B. et al. Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L98–L109 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Song, Y. et al. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112, 553–562 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Kang, Q. et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 11, 1312–1320 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Slowik, M.R. et al. Evidence that tumor necrosis factor triggers apoptosis in human endothelial cells by interleukin-1-converting enzyme-like protease-dependent and -independent pathways. Lab. Invest. 77, 257–267 (1997).

    CAS  PubMed  Google Scholar 

  30. 30

    Upton, P.D., Davies, R.J., Trembath, R.C. & Morrell, N.W. Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J. Biol. Chem. 284, 15794–15804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Beppu, H. et al. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev. Biol. 221, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Machado, R.D. et al. Mutations of the TGF-β type II receptor BMPR2 in pulmonary arterial hypertension. Hum. Mutat. 27, 121–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Lechleider, R.J. et al. Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev. Biol. 240, 157–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Reynolds, A.M., Holmes, M.D., Danilov, S.M. & Reynolds, P.N. Targeted gene delivery of BMPR-2 attenuates pulmonary hypertension. Eur. Respir. J. 39, 329–343 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Ciumas, M. et al. Bone morphogenetic proteins protect pulmonary microvascular endothelial cells from apoptosis by upregulating α-B-crystallin. Arterioscler. Thromb. Vasc. Biol. 33, 2577–2584 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Frump, A.L., Lowery, J.W., Hamid, R., Austin, E.D. & de Caestecker, M. Abnormal trafficking of endogenously expressed BMPR2 mutant allelic products in patients with heritable pulmonary arterial hypertension. PLoS ONE 8, e80319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Valdimarsdottir, G. et al. Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106, 2263–2270 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    González-Núñez, M., Munoz-Felix, J.M. & Lopez-Novoa, J.M. The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim. Biophys. Acta 1832, 1492–1510 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Prewitt, A.R. et al. Heterozygous null bone morphogenetic protein receptor type 2 mutations promote SRC kinase-dependent caveolar trafficking defects and endothelial dysfunction in pulmonary arterial hypertension. J. Biol. Chem. 290, 960–971 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Nasim, M.T. et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum. Mutat. 32, 1385–1389 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Drake, K.M. et al. Altered microRNA processing in heritable pulmonary arterial hypertension: an important role for Smad-8. Am. J. Respir. Crit. Care Med. 184, 1400–1408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Han, C. et al. SMAD1 deficiency in either endothelial or smooth muscle cells can predispose mice to pulmonary hypertension. Hypertension 61, 1044–1052 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Hemnes, A.R. et al. Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 189, 325–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Geti, I. et al. A practical and efficient cellular substrate for the generation of induced pluripotent stem cells from adults: blood-derived endothelial progenitor cells. Stem Cells Transl. Med. 1, 855–865 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Allport, J.R. et al. Neutrophils from MMP-9- or neutrophil elastase–deficient mice show no defect in transendothelial migration under flow in vitro. J. Leukoc. Biol. 71, 821–828 (2002).

    CAS  PubMed  Google Scholar 

  46. 46

    Yang, X. et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ. Res. 96, 1053–1063 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Smyth, G.K. Limma: linear models for microarray data. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds. Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudiot, S.) 397–420 (Springer, New York, 2005).

  48. 48

    Luo, W., Friedman, M.S., Shedden, K., Hankenson, K.D. & Woolf, P.J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics 10, 161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Tarca, A.L. et al. A novel signaling pathway impact analysis (SPIA). Bioinformatics 25, 75–82 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830–1831 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Harrington, E.O. et al. Role of protein kinase C isoforms in rat epididymal microvascular endothelial barrier function. Am. J. Respir. Cell Mol. Biol. 28, 626–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Waters, J.P. et al. In vitro self-assembly of human pericyte-supported endothelial microvessels in three-dimensional coculture: a simple model for interrogating endothelial-pericyte interactions. J. Vasc. Res. 50, 324–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Bidart, M. et al. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell. Mol. Life Sci. 69, 313–324 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Moitra, J., Sammani, S. & Garcia, J.G. Re-evaluation of Evans Blue dye as a marker of albumin clearance in murine models of acute lung injury. Transl. Res. 150, 253–265 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the British Heart Foundation RG/13/4/30107 (N.W.M.), CH/09/001/25945 (N.W.M.), PG/11/10/28724 (P.D.U. and N.W.M.) and FS/12/39/29653 (M.L.O.); a Fondation Leducq Transatlantic Network of Excellence Award (N.W.M. and P.B.Y.); US National Institutes of Health grants 5R01-AR057374 (P.B.Y.), 5K08-HL079943 (P.B.Y.) and R01-HL098199 (M.A.A.); a Howard Hughes Medical Institute Early Career Physician Scientist Award (P.B.Y.) and a UK National Institute for Health Research Healthcare Science Fellowship (M.S.). The UK National Institute for Health Research Cambridge Biomedical Research Centre and Cell Phenotyping Hub provided infrastructure support.

Author information

Affiliations

Authors

Contributions

L.L. designed, performed and analyzed all in vivo and some in vitro and ex vivo experiments. M.L.O. designed, performed and analyzed multiple in vitro experiments, including array study, and some ex vivo experiments and wrote the manuscript. X.Y. designed, performed and analyzed multiple in vitro experiments and some ex vivo experiments. M.S. performed all histological analyses, including in vivo quantification of apoptosis. S.G. analyzed and interpreted array data. R.D.M., M.M. and B.K. designed and created the R899X knock-in mouse. L.M.Y. and P.B.Y. designed, performed and interpreted the mouse Sugen-hypoxia experiments and assessment of in vivo bone formation. J.M.W. performed in vitro three-dimensional tube formation assays. S.D.M. designed and performed collection and treatment of rat pulmonary arteries. K.M.D. and M.A.A. performed human and mouse NMD analysis. P.D.U. designed and supervised multiple experiments and performed in vitro assessment of VEGF-induced proliferation. N.W.M. conceived and supervised the study, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Nicholas W Morrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 & Supplementary Tables 1–2 (PDF 18203 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, L., Ormiston, M., Yang, X. et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med 21, 777–785 (2015). https://doi.org/10.1038/nm.3877

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing