Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supercooling enables long-term transplantation survival following 4 days of liver preservation


The realization of long-term human organ preservation will have groundbreaking effects on the current practice of transplantation. Herein we present a new technique based on subzero nonfreezing preservation and extracorporeal machine perfusion that allows transplantation of rat livers preserved for up to four days, thereby tripling the viable preservation duration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transplantation of supercooled livers.
Figure 2: Subnormothermic machine perfusion recovery and histology.


  1. 1

    US Department of Health & Human Services Health Resources and Services Administration. Organ Procurement and Transplantation Network (OPTN), (2014; accessed 1 June 2014).

  2. 2

    Belzer, F.O. & Southard, J.H. Principles of solid-organ preservation by cold storage. Transplantation 45, 673–676 (1988).

    CAS  Article  Google Scholar 

  3. 3

    Ploeg, R.J. et al. Successful 72-hour cold storage kidney preservation with UW solution. Transplant. Proc. 20, 935–938 (1988).

    CAS  PubMed  Google Scholar 

  4. 4

    Fahy, G.M. et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology 48, 157–178 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Song, Y.C., Khirabadi, B.S., Lightfoot, F., Brockbank, K.G. & Taylor, M.J. Vitreous cryopreservation maintains the function of vascular grafts. Nat. Biotechnol. 18, 296–299 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Fahy, G.M., Wowk, B. & Wu, J. Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain. Rejuvenation Res. 9, 279–291 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Pegg, D.E. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 60, S36–S44 (2010).

    Article  Google Scholar 

  8. 8

    Rall, W.F. & Fahy, G.M. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313, 573–575 (1985).

    CAS  Article  Google Scholar 

  9. 9

    Fahy, G.M. et al. Physical and biological aspects of renal vitrification. Organogenesis 5, 167–175 (2009).

    Article  Google Scholar 

  10. 10

    al-Abdulla, N.A. et al. The effects of supercooling chemicals on myocardial ultrastructure: a transmission electron microscopy case study. Conn. Med. 59, 387–399 (1995).

    CAS  PubMed  Google Scholar 

  11. 11

    Banafsche, R., Pomer, S. & Staehler, G. Nonfreezing cryopreservation—a possible means of improving long-term transplant function? Transpl. Int. 11, 127–136 (1998).

    CAS  PubMed  Google Scholar 

  12. 12

    Kato, H., Tomita, S., Yamaguchi, S., Ohtake, H. & Watanabe, G. Subzero 24-hr nonfreezing rat heart preservation: a novel preservation method in a variable magnetic field. Transplantation 94, 473–477 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Monzen, K. et al. The use of a supercooling refrigerator improves the preservation of organ grafts. Biochem. Biophys. Res. Commun. 337, 534–539 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Okamoto, T. et al. Successful sub-zero non-freezing preservation of rat lungs at −2 °C utilizing a new supercooling technology. J. Heart Lung Transplant. 27, 1150–1157 (2008).

    Article  Google Scholar 

  15. 15

    Scotte, M. et al. Liver preservation below 0 °C with UW solution and 2,3-butanediol. Cryobiology 33, 54–61 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Yoshida, K. et al. A novel conception for liver preservation at a temperature just above freezing point. J. Surg. Res. 81, 216–223 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Ishine, N., Rubinsky, B. & Lee, C.Y. Transplantation of mammalian livers following freezing: vascular damage and functional recovery. Cryobiology 40, 84–89 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Guarrera, J.V. et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am. J. Transplant. 10, 372–381 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Moers, C. et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 360, 7–19 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Dutkowski, P., de Rougemont, O. & Clavien, P.A. Machine perfusion for 'Marginal' liver grafts. Am. J. Transplant. 8, 917–924 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Maathuis, M.H. et al. Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Ann. Surg. 246, 982–988, discussion 989–991 (2007).

    Article  Google Scholar 

  22. 22

    Nowak, G., Ungerstedt, J., Wernerson, A., Ungerstedt, U. & Ericzon, B.G. Hepatic cell membrane damage during cold preservation sensitizes liver grafts to rewarming injury. J. Hepatobiliary Pancreat. Surg. 10, 200–205 (2003).

    Article  Google Scholar 

  23. 23

    Usta, O.B. et al. Supercooling as a viable non-freezing cell preservation method of rat hepatocytes. PLoS ONE 8, e69334 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Taylor, M.J. in Advances in Biopreservation (eds. Baust, J.G., Baust, J.M. & Group, F.) Ch. 2 (CRC Press, Boca Raton, Florida, 2007).

  25. 25

    Gao, W., Bentley, R.C., Madden, J.F. & Clavien, P.A. Apoptosis of sinusoidal endothelial cells is a critical mechanism of preservation injury in rat liver transplantation. Hepatology 27, 1652–1660 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Huet, P.M. et al. Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver. Hepatology 39, 1110–1119 (2004).

    Article  Google Scholar 

  27. 27

    Schlegel, A., Rougemont, O., Graf, R., Clavien, P.A. & Dutkowski, P. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J. Hepatol. 58, 278–286 (2013).

    Article  Google Scholar 

  28. 28

    Mühlbacher, F., Langer, F. & Mittermayer, C. Preservation solutions for transplantation. Transplant Proc. 31, 2069–2070 (1999).

    Article  Google Scholar 

  29. 29

    Dutheil, D., Underhaug Gjerde, A., Petit-Paris, I., Mauco, G. & Holmsen, H. Polyethylene glycols interact with membrane glycerophospholipids: is this part of their mechanism for hypothermic graft protection? J. Chem. Biol. 2, 39–49 (2009).

    Article  Google Scholar 

  30. 30

    Oltean, M. et al. Intraluminal polyethylene glycol stabilizes tight junctions and improves intestinal preservation in the rat. Am. J. Transplant. 12, 2044–2051 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Bessems, M., Doorschodt, B.M., Hooijschuur, O., van Vliet, A.K. & van Gulik, T.M. Optimization of a new preservation solution for machine perfusion of the liver: which is the preferred colloid? Transplant. Proc. 37, 329–331 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Storey, K.B., Bischof, J. & Rubinsky, B. Cryomicroscopic analysis of freezing in liver of the freeze-tolerant wood frog. Am. J. Physiol. 263, R185–R194 (1992).

    CAS  PubMed  Google Scholar 

  33. 33

    Klepper, J. et al. Erythrocyte 3-O-methyl-d-glucose uptake assay for diagnosis of glucose-transporter-protein syndrome. J. Clin. Lab. Anal. 13, 116–121 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Sugimachi, K., Roach, K.L., Rhoads, D.B., Tompkins, R.G. & Toner, M. Nonmetabolizable glucose compounds impart cryotolerance to primary rat hepatocytes. Tissue Eng. 12, 579–588 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Gok, M.A. et al. Improving the quality of kidneys from non-heart-beating donors, using streptokinase: an animal model. Transplantation 73, 1869–1874 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Minor, T. & Paul, A. Hypothermic reconditioning in organ transplantation. Curr. Opin. Organ Transplant. 18, 161–167 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Vogel, T., Brockmann, J.G. & Friend, P.J. Ex vivo normothermic liver perfusion: an update. Curr. Opin. Organ Transplant. 15, 167–172 (2010).

    Article  Google Scholar 

  38. 38

    Berendsen, T.A. et al. A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transplant. Res. 1, 6 (2012).

    Article  Google Scholar 

  39. 39

    Bruinsma, B.G. et al. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am. J. Transplant. 14, 1400–1409 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Bruinsma, B.G., Berendsen, T.A., Izamis, M.L., Yarmush, M.L. & Uygun, K. Determination and extension of the limits to static cold storage using subnormothermic machine perfusion. Int. J. Artif. Organs 36, 775–780 (2013).

    Article  Google Scholar 

  41. 41

    Tolboom, H. et al. A model for normothermic preservation of the rat liver. Tissue Eng. 13, 2143–2151 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Tolboom, H. et al. Recovery of warm ischemic rat liver grafts by normothermic extracorporeal perfusion. Transplantation 87, 170–177 (2009).

    Article  Google Scholar 

  43. 43

    Izamis, M.-L. et al. Simple machine perfusion significantly enhances hepatocyte yields of ischemic and fresh rat livers. Cell Med. 4, 109–123 (2013).

    Article  Google Scholar 

Download references


Funding from the US National Institutes of Health (grants R01EB008678, R01DK096075, R01DK084053, R00DK080942, R00DK088962 and F32 DK095558) and the Shriners Hospitals for Children is gratefully acknowledged.

Author information




T.A.B., B.G.B., M.-L.I., O.B.U., B.E.U., M.T., M.L.Y. and K.U. conceived and designed the study; T.A.B., B.G.B., C.F.P. and N.S. performed data acquisition; T.A.B., B.G.B., M.-L.I., M.L.Y. and K.U. analyzed and interpreted data; T.A.B. and B.G.B. performed rat liver procurement and transplantation; T.A.B., B.G.B. and M.-L.I. designed and constructed the supercooling device and container; T.A.B., B.G.B. and K.U. wrote the manuscript; T.A.B., B.G.B., C.F.P., N.S., O.B.U., B.E.U., M.-L.I., M.T., M.L.Y. and K.U. participated in critical revision of the manuscript for intellectual content; T.A.B., B.G.B. and K.U. performed statistical analysis; and M.L.Y. and K.U. obtained funding. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Martin L Yarmush or Korkut Uygun.

Ethics declarations

Competing interests

M.L.I., B.E.U., K.U. and M.L.Y. are inventors on a pending international patent application that involves some of the perfusion technology used in this work (WO/2011/002926); T.A.B., M.L.I., B.E.U., M.L.Y. and K.U. are inventors on a pending international patent application that describes the supercooling protocol employed in this work (WO/2011/35223); and B.G.B., M.L.I. and K.U. have a provisional patent application related to this work that describes scale-up of the perfusion protocol to human livers. K.U. has a financial interest in Organ Solutions LLC, a company focused on developing organ preservation technology. K.U.'s interests are managed by the Massachusetts General Hospital and Partners HealthCare in accordance with their conflict-of-interest policies.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berendsen, T., Bruinsma, B., Puts, C. et al. Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med 20, 790–793 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing