Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta

Abstract

Osteogenesis imperfecta (OI) is a heritable disorder, in both a dominant and recessive manner, of connective tissue characterized by brittle bones, fractures and extraskeletal manifestations1. How structural mutations of type I collagen (dominant OI) or of its post-translational modification machinery (recessive OI) can cause abnormal quality and quantity of bone is poorly understood. Notably, the clinical overlap between dominant and recessive forms of OI suggests common molecular pathomechanisms2. Here, we show that excessive transforming growth factor-β (TGF-β) signaling is a mechanism of OI in both recessive (Crtap−/−) and dominant (Col1a2tm1.1Mcbr) OI mouse models. In the skeleton, we find higher expression of TGF-β target genes, higher ratio of phosphorylated Smad2 to total Smad2 protein and higher in vivo Smad2 reporter activity. Moreover, the type I collagen of Crtap−/− mice shows reduced binding to the small leucine-rich proteoglycan decorin, a known regulator of TGF-β activity3,4. Anti–TGF-β treatment using the neutralizing antibody 1D11 corrects the bone phenotype in both forms of OI and improves the lung abnormalities in Crtap−/− mice. Hence, altered TGF-β matrix-cell signaling is a primary mechanism in the pathogenesis of OI and could be a promising target for the treatment of OI.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Excessive TGF-β signaling in Crtap−/− mice.
Figure 2: Phenotypic correction of Crtap−/− mice after treatment with the TGF-β neutralizing antibody 1D11.
Figure 3: Reduced decorin binding to type I collagen of Crtap−/− mice.
Figure 4: Inhibition of upregulated TGF-β signaling improves the bone phenotype in a mouse model of dominant OI (Col1a2tm1.1Mcbr).

References

  1. Rauch, F. & Glorieux, F.H. Osteogenesis imperfecta. Lancet 363, 1377–1385 (2004).

    Article  CAS  Google Scholar 

  2. Baldridge, D. et al. CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta. Hum. Mutat. 29, 1435–1442 (2008).

    Article  CAS  Google Scholar 

  3. Markmann, A., Hausser, H., Schonherr, E. & Kresse, H. Influence of decorin expression on transforming growth factor-β–mediated collagen gel retraction and biglycan induction. Matrix Biol. 19, 631–636 (2000).

    Article  CAS  Google Scholar 

  4. Takeuchi, Y., Kodama, Y. & Matsumoto, T. Bone matrix decorin binds transforming growth factor-β and enhances its bioactivity. J. Biol. Chem. 269, 32634–32638 (1994).

    CAS  PubMed  Google Scholar 

  5. Morello, R. et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127, 291–304 (2006).

    Article  CAS  Google Scholar 

  6. Mizuno, K., Peyton, D.H., Hayashi, T., Engel, J. & Bächinger, H.P. Effect of the -Gly-3(S)-hydroxyprolyl-4(R)-hydroxyprolyl- tripeptide unit on the stability of collagen model peptides. FEBS J. 275, 5830–5840 (2008).

    Article  CAS  Google Scholar 

  7. Homan, E.P. et al. Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues. PLoS Genet. 10, e1004121 (2014).

    Article  Google Scholar 

  8. Tang, Y. et al. TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

    Article  CAS  Google Scholar 

  9. Yang, T. et al. E-selectin ligand 1 regulates bone remodeling by limiting bioactive TGF-β in the bone microenvironment. Proc. Natl. Acad. Sci. USA 110, 7336–7341 (2013).

    Article  CAS  Google Scholar 

  10. Dallas, S.L. et al. Characterization and autoregulation of latent transforming growth factor β (TGF β) complexes in osteoblast-like cell lines. Production of a latent complex lacking the latent TGF β–binding protein. J. Biol. Chem. 269, 6815–6821 (1994).

    CAS  PubMed  Google Scholar 

  11. Hering, S. et al. TGFβ1 and TGFβ2 mRNA and protein expression in human bone samples. Exp. Clin. Endocrinol. Diabetes 109, 217–226 (2001).

    Article  CAS  Google Scholar 

  12. Oreffo, R.O., Mundy, G.R., Seyedin, S.M. & Bonewald, L.F. Activation of the bone-derived latent TGF β complex by isolated osteoclasts. Biochem. Biophys. Res. Commun. 158, 817–823 (1989).

    Article  CAS  Google Scholar 

  13. Hildebrand, A. et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor β. Biochem. J. 302, 527–534 (1994).

    Article  CAS  Google Scholar 

  14. Erlebacher, A. & Derynck, R. Increased expression of TGF-β 2 in osteoblasts results in an osteoporosis-like phenotype. J. Cell Biol. 132, 195–210 (1996).

    Article  CAS  Google Scholar 

  15. Neptune, E.R. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    Article  CAS  Google Scholar 

  16. Baldridge, D. et al. Generalized connective tissue disease in Crtap−/− mouse. PLoS ONE 5, e10560 (2010).

    Article  Google Scholar 

  17. Thiele, F. et al. Cardiopulmonary dysfunction in the osteogenesis imperfecta mouse model Aga2 and human patients are caused by bone-independent mechanisms. Hum. Mol. Genet. 21, 3535–3545 (2012).

    Article  CAS  Google Scholar 

  18. McAllion, S.J. & Paterson, C.R. Causes of death in osteogenesis imperfecta. J. Clin. Pathol. 49, 627–630 (1996).

    Article  CAS  Google Scholar 

  19. Rauch, F., Travers, R., Parfitt, A.M. & Glorieux, F.H. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26, 581–589 (2000).

    Article  CAS  Google Scholar 

  20. Ward, L.M. et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone 31, 12–18 (2002).

    Article  CAS  Google Scholar 

  21. Janssens, K., ten Dijke, P., Janssens, S. & Van Hul, W. Transforming growth factor-β1 to the bone. Endocr. Rev. 26, 743–774 (2005).

    Article  CAS  Google Scholar 

  22. Fuller, K., Lean, J.M., Bayley, K.E., Wani, M.R. & Chambers, T.J. A role for TGFβ1 in osteoclast differentiation and survival. J. Cell Sci. 113, 2445–2453 (2000).

    CAS  PubMed  Google Scholar 

  23. Xian, L. et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095–1101 (2012).

    Article  CAS  Google Scholar 

  24. Alliston, T., Choy, L., Ducy, P., Karsenty, G. & Derynck, R. TGF-β–induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 20, 2254–2272 (2001).

    Article  CAS  Google Scholar 

  25. Edwards, J.R. et al. Inhibition of TGF-β signaling by 1D11 antibody treatment increases bone mass and quality in vivo. J. Bone Miner. Res. 25, 2419–2426 (2010).

    Article  CAS  Google Scholar 

  26. Sarathchandra, P., Pope, F.M., Kayser, M.V. & Ali, S.Y. A light and electron microscopic study of osteogenesis imperfecta bone samples, with reference to collagen chemistry and clinical phenotype. J. Pathol. 192, 385–395 (2000).

    Article  CAS  Google Scholar 

  27. Karsdal, M.A. et al. Matrix metalloproteinase–dependent activation of latent transforming growth factor-β controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J. Biol. Chem. 277, 44061–44067 (2002).

    Article  CAS  Google Scholar 

  28. Gauldie, J. et al. Transfer of the active form of transforming growth factor-β 1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia. Am. J. Pathol. 163, 2575–2584 (2003).

    Article  CAS  Google Scholar 

  29. Morty, R.E., Konigshoff, M. & Eickelberg, O. Transforming growth factor-β signaling across ages: from distorted lung development to chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 6, 607–613 (2009).

    Article  CAS  Google Scholar 

  30. Marwick, J.A. et al. Cigarette smoke-induced oxidative stress and TGF-β1 increase p21waf1/cip1 expression in alveolar epithelial cells. Ann. NY Acad. Sci. 973, 278–283 (2002).

    Article  CAS  Google Scholar 

  31. Hausser, H., Groning, A., Hasilik, A., Schonherr, E. & Kresse, H. Selective inactivity of TGF-β/decorin complexes. FEBS Lett. 353, 243–245 (1994).

    Article  CAS  Google Scholar 

  32. Keene, D.R. et al. Decorin binds near the C terminus of type I collagen. J. Biol. Chem. 275, 21801–21804 (2000).

    Article  CAS  Google Scholar 

  33. Marini, J.C. et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 28, 209–221 (2007).

    Article  CAS  Google Scholar 

  34. Schönherr, E. et al. Interaction of biglycan with type I collagen. J. Biol. Chem. 270, 2776–2783 (1995).

    Article  Google Scholar 

  35. Nikitovic, D. et al. The biology of small leucine-rich proteoglycans in bone pathophysiology. J. Biol. Chem. 287, 33926–33933 (2012).

    Article  CAS  Google Scholar 

  36. Christ, M. et al. Immune dysregulation in TGF-β 1–deficient mice. J. Immunol. 153, 1936–1946 (1994).

    CAS  PubMed  Google Scholar 

  37. Trachtman, H. et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 79, 1236–1243 (2011).

    Article  CAS  Google Scholar 

  38. Lonning, S., Mannick, J. & McPherson, J.M. Antibody targeting of TGF-β in cancer patients. Curr. Pharm. Biotechnol. 12, 2176–2189 (2011).

    Article  CAS  Google Scholar 

  39. Morris, J.C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-β (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One 11, e90353 (2014).

    Article  Google Scholar 

  40. Orwoll, E.S. et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J. Clin. Invest. 124, 491–498 (2014).

    Article  CAS  Google Scholar 

  41. Daley, E. et al. Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model. J. Bone Miner. Res. 25, 247–261 (2010).

    Article  CAS  Google Scholar 

  42. Lin, A.H. et al. Global analysis of Smad2/3-dependent TGF-β signaling in living mice reveals prominent tissue-specific responses to injury. J. Immunol. 175, 547–554 (2005).

    Article  CAS  Google Scholar 

  43. Abe, M. et al. An assay for transforming growth factor-β using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal. Biochem. 216, 276–284 (1994).

    Article  CAS  Google Scholar 

  44. Chen, Z.H. et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc. Natl. Acad. Sci. USA 107, 18880–18885 (2010).

    Article  CAS  Google Scholar 

  45. Eyre, D. Collagen cross-linking amino acids. Methods Enzymol. 144, 115–139 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Spencer and his lab (Baylor College of Medicine) for providing the IVIS camera system and training, M. Starbuck and F. Gannon for consultation and advice in bone histomorphometry, M. Warman and C. Jacobsen (Boston Children's Hospital) for providing the Col1a2tm1.1Mcbr mice and helpful information. We also thank L. Fisher (US National Institute of Dental and Craniofacial Research) for providing the decorin antibody LF-113. We thank M. Bagos for help with microCT analyses, A. Abraham for help with the biomechanical testing, W. Song and S. Liu for their help with serum bone turnover analyses, the US National Institutes of Health (NIH) for providing the ImageJ software and A. Choi and H. Lam (Harvard Medical School) for providing the ImageJ modification for lung morphometry, which was generated by P. Thompson. Also, we thank D. Rifkin (New York University Medical Center) for providing PAI-luciferase reporter mink lung epithelial cells. In addition, we thank R. Morello, G. Sule, D. Baldridge and G. Ghosal for their helpful discussions and P. Fonseca for editorial assistance. This work was supported by a research fellowship from the German Research Foundation/Deutsche Forschungsgemeinschaft (I.G.), a Michael Geisman Fellowship from the Osteogenesis Imperfecta Foundation (I.G.), grant support from Shriners Hospitals for Children (H.P.B.), NIH grants 5F31DE020954 (E.P.H.), 5F31DE022483 (C.L.), R37 AR037318 and R01 AR036794 (D.E.), and P01 HD70394 (B.L. and D.E.) and the Howard Hughes Medical Institute Foundation (B.L.). This work was also supported by the Baylor College of Medicine Intellectual and Developmental Disabilities Research Center (HD024064), the Eunice Kennedy Shriver US National Institute of Child Health & Human Development and the Rolanette and Berdon Lawrence Bone Disease Program of Texas.

Author information

Authors and Affiliations

Authors

Contributions

I.G. and B.L. conceptualized the study. T.Y., T.K.S., C.A., D.E. and H.P.B. contributed to the design of the study and experiments. I.G., T.Y., S.A., E.P.H., C.L., M.M.J., T.B., E.M., Y.C., B.D., Y.I., M.A.W. and C.A. performed and analyzed experiments. I.G., T.Y. and B.L. wrote the manuscript with contributions from all authors. B.L. supervised the project.

Corresponding author

Correspondence to Brendan Lee.

Ethics declarations

Competing interests

T.K.S. is an employee of Genzyme/Sanofi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–6. (PDF 6884 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grafe, I., Yang, T., Alexander, S. et al. Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med 20, 670–675 (2014). https://doi.org/10.1038/nm.3544

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing