Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models

Abstract

Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT mutation affects NMDAR function, and direct evidence for a causative role is missing. Here we show that mutant HTT redirects an intracellular store of juvenile NMDARs containing GluN3A subunits to the surface of striatal neurons by sequestering and disrupting the subcellular localization of the endocytic adaptor PACSIN1, which is specific for GluN3A. Overexpressing GluN3A in wild-type mouse striatum mimicked the synapse loss observed in Huntington's disease mouse models, whereas genetic deletion of GluN3A prevented synapse degeneration, ameliorated motor and cognitive decline and reduced striatal atrophy and neuronal loss in the YAC128 Huntington's disease mouse model. Furthermore, GluN3A deletion corrected the abnormally enhanced NMDAR currents, which have been linked to cell death in Huntington's disease and other neurodegenerative conditions. Our findings reveal an early pathogenic role of GluN3A dysregulation in Huntington's disease and suggest that therapies targeting GluN3A or pathogenic HTT-PACSIN1 interactions might prevent or delay disease progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PACSIN1 binds to and colocalizes with mHTT.
Figure 2: mHTT increases the surface expression of GluN3A-containing NMDARs.
Figure 3: Enhanced GluN3A protein in the striatum of humans with Huntington's disease and in mouse models.
Figure 4: Aberrant GluN3A expression in striatal MSNs triggers spine and synapse loss.
Figure 5: Rescue of motor and cognitive dysfunction by GluN3A deletion.
Figure 6: Suppressing GluN3A prevents, and increasing GluN3A potentiates, mHTT-induced death of striatal MSNs.

Similar content being viewed by others

References

  1. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Kaltenbach, L.S. et al. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 3, e82 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Goehler, H. et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol. Cell 15, 853–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Qin, Z.H. et al. Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J. Neurosci. 24, 269–281 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, J.Y., Plomann, M. & Brundin, P. Huntington's disease: a synaptopathy? Trends Mol. Med. 9, 414–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Pérez-Otaño, I. et al. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat. Neurosci. 9, 611–621 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Levine, M.S. et al. Enhanced sensitivity to N-methyl-d-aspartate receptor activation in transgenic and knock-in mouse models of Huntington's disease. J. Neurosci. Res. 58, 515–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Zeron, M.M. et al. Increased sensitivity to N-methyl-d-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33, 849–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Cepeda, C. et al. NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res. 66, 525–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Laforet, G.A. et al. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease. J. Neurosci. 21, 9112–9123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Milnerwood, A.J. et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron 65, 178–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Beal, M.F. et al. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321, 168–171 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Das, S. et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393, 377–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Roberts, A.C. et al. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron 63, 342–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Modregger, J., DiProspero, N.A., Charles, V., Tagle, D.A. & Plomann, M. PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington's disease brains. Hum. Mol. Genet. 11, 2547–2558 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Lim, J. et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452, 713–718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Slow, E.J. et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12, 1555–1567 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Li, Q. et al. A syntaxin 1, Gα(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J. Neurosci. 24, 4070–4081 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perez-Otaño, I. et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J. Neurosci. 21, 1228–1237 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, X. et al. Mutant huntingtin impairs vesicle formation from recycling endosomes by interfering with Rab11 activity. Mol. Cell Biol. 29, 6106–6116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, M., Penick, E.C., Edwards, J.G., Kauer, J.A. & Ehlers, M.D. Recycling endosomes supply AMPA receptors for LTP. Science 305, 1972–1975 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Wong, H.K. et al. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J. Comp. Neurol. 450, 303–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Henson, M.A., Roberts, A.C., Perez-Otaño, I. & Philpot, B.D. Influence of the NR3A subunit on NMDA receptor functions. Prog. Neurobiol. 91, 23–37 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Qualmann, B., Roos, J., DiGregorio, P.J. & Kelly, R.B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Canals, J.M. et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J. Neurosci. 24, 7727–7739 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazarakis, N.K. et al. Deficits in experience-dependent cortical plasticity and sensory-discrimination learning in presymptomatic Huntington's disease mice. J. Neurosci. 25, 3059–3066 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Raamsdonk, J.M. et al. Phenotypic abnormalities in the YAC128 mouse model of Huntington disease are penetrant on multiple genetic backgrounds and modulated by strain. Neurobiol. Dis. 26, 189–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Graham, R.K. et al. Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiol. Dis. 21, 444–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Wheeler, V.C. et al. Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Hum. Mol. Genet. 11, 633–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Martínez-Turrillas, R. et al. The NMDA receptor subunit GluN3A protects against 3-nitroproprionic–induced striatal lesions via inhibition of calpain activation. Neurobiol. Dis. 48, 290–298 (2012).

    Article  PubMed  CAS  Google Scholar 

  35. Graveland, G.A., Williams, R.S. & DiFiglia, M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science 227, 770–773 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Cummings, D.M., Cepeda, C. & Levine, M.S. Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease. ASN Neuro 2, e00036 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Van Raamsdonk, J.M. et al. Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease. J. Neurosci. 25, 4169–4180 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bibb, J.A. et al. Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice. Proc. Natl. Acad. Sci. USA 97, 6809–6814 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vonsattel, J.P. Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol. 115, 55–69 (2008).

    Article  PubMed  Google Scholar 

  40. Rudnicki, D.D., Pletnikova, O., Vonsattel, J.P., Ross, C.A. & Margolis, R.L. A comparison of huntington disease and huntington disease–like 2 neuropathology. J. Neuropathol. Exp. Neurol. 67, 366–374 (2008).

    Article  PubMed  Google Scholar 

  41. Reinhart, P.H. et al. Identification of anti-inflammatory targets for Huntington's disease using a brain slice-based screening assay. Neurobiol. Dis. 43, 248–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Slow, E.J. et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc. Natl. Acad. Sci. USA 102, 11402–11407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okamoto, S. et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 15, 1407–1413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bodner, R.A. et al. Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington's and Parkinson's diseases. Proc. Natl. Acad. Sci. USA 103, 4246–4251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, L., Murphy, T.H., Hayden, M.R. & Raymond, L.A. Enhanced striatal NR2B-containing N-methyl-d-aspartate receptor–mediated synaptic currents in a mouse model of Huntington disease. J. Neurophysiol. 92, 2738–2746 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Murphy, K.P. et al. Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation. J. Neurosci. 20, 5115–5123 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Usdin, M.T., Shelbourne, P.F., Myers, R.M. & Madison, D.V. Impaired synaptic plasticity in mice carrying the Huntington's disease mutation. Hum. Mol. Genet. 8, 839–846 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Lynch, G. et al. Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease. J. Neurosci. 27, 4424–4434 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Starling, A.J. et al. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease. J. Neurosci. Res. 82, 377–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Hardingham, G.E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cepeda, C., Wu, N., Andre, V.M., Cummings, D.M. & Levine, M.S. The corticostriatal pathway in Huntington's disease. Prog. Neurobiol. 81, 253–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Nakanishi, N. et al. Neuroprotection by the NR3A subunit of the NMDA receptor. J. Neurosci. 29, 5260–5265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hansson, O. et al. Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid–induced striatal excitotoxicity. Proc. Natl. Acad. Sci. USA 96, 8727–8732 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Graham, R.K. et al. Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J. Neurosci. 29, 2193–2204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Irwin, S. et al. RNA association and nucleocytoplasmic shuttling by ataxin-1. J. Cell Sci. 118, 233–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Lloret, A. et al. Genetic background modifies nuclear mutant huntingtin accumulation and HD CAG repeat instability in Huntington's disease knock-in mice. Hum. Mol. Genet. 15, 2015–2024 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Grosshans, D.R., Clayton, D.A., Coultrap, S.J. & Browning, M.D. Analysis of glutamate receptor surface expression in acute hippocampal slices. Sci. STKE 2002, Pl8 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Giralt, A., Carreton, O., Lao-Peregrin, C., Martin, E.D. & Alberch, J. Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction. Mol. Neurodegener. 6, 71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ricobaraza, A., Cuadrado-Tejedor, M., Marco, S., Perez-Otano, I. & Garcia-Osta, A. Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus 22, 1040–1050 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Finkbeiner (Gladstone Institute, University of California San Francisco), H. Zoghbi (Baylor College of Medicine), T. Yamamoto (University of Tokyo) and M. Ehlers (Pfizer Neuroscience) for providing reagents, A. Zandueta, C. Rodríguez-Viña, F. Ballesteros, X. Remírez and M. Montañana for excellent technical help, M. Galarraga for advice with image analysis, and M. Ehlers, M. Arrasate, T. Aragón, J.A. Esteban and B.D. Philpot for critical readings of the manuscript. This work was funded by the Unión Temporal de Empresas (UTE) project at the Centro de Investigación Médica Aplicada, Gobierno de Navarra, and Spanish Ministry of Science grants (SAF2010-20636 and CSD2008-00005 to I.P.-O., BFU2009-12160 to J.F.W. and SAF2011-29507 to J.A.), grants from the Hereditary Disease Foundation (to I.P.-O. and D.C.L.), US National Institutes of Health grants P01 HD29587, P01 ES016738 and R01 EY05477 (to S.A.L.) and grants from the Cure Huntington's Disease Initiative and the Canadian Institutes of Health Research (to M.R.H.). M.R.H., a Killam University Professor, holds a Canada Research Chair in Human Genetics.

Author information

Authors and Affiliations

Authors

Contributions

S.M. performed and analyzed the biochemical experiments in cultured neurons, recombinant cells and YAC128 mice, the imaging experiments in cultured neurons and the spine morphology measurements and collaborated with A.G. on neuropathological studies. A.G. performed and analyzed biochemical experiments in humans and R6/1 and knock-in mice and the behavioral experiments. M.M.P. performed electrophysiological recordings. M.A.P. performed and analyzed behavioral experiments. R.M.-T. contributed to mouse genotyping and conducted biochemical fractionation and real-time PCR assays. J.M.-H. and R.L. performed and analyzed electron microscopy studies. L.S.K. and D.C.L. performed and analyzed slice culture experiments. J.T.-P. performed the initial biochemical experiments in R6/1 mice. M.R.H. and R.K.G. provided the YAC128 mice. N.N. and S.A.L. provided the Grin3a−/− mice. M.W. made the GluN3A-specific antibody used in biochemical and immunocytochemical analyses. J.A. designed and supervised experiments. J.F.W. designed and analyzed electrophysiological and fluorescence colocalization experiments and contributed to the manuscript writing. I.P.-O. conceived the study, designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Isabel Pérez-Otaño.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 3101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marco, S., Giralt, A., Petrovic, M. et al. Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nat Med 19, 1030–1038 (2013). https://doi.org/10.1038/nm.3246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing