Article | Published:

Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy

Nature Medicine volume 19, pages 10391046 (2013) | Download Citation

Subjects

Abstract

The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and that its deficiency in muscle leads to reduced mitochondrial content and oxidative function, as well as upregulation of autophagy. These cellular effects resulted in both impaired mitochondrial biogenesis and increased clearance of this organelle, leading to compromised exercise capacity. On a molecular level, Rev-erb-α deficiency resulted in deactivation of the Lkb1-Ampk-Sirt1–Ppargc-1α signaling pathway. These effects were recapitulated in isolated fibers and in muscle cells after knockdown of the gene encoding Rev-erb-α, Nr1d1. In complementary experiments, Rev-erb-α overexpression in vitro increased the number of mitochondria and improved respiratory capacity, whereas muscle overexpression or pharmacological activation of Rev-erb-α in vivo increased exercise capacity. This study identifies Rev-erb-α as a pharmacological target that improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Transcriptional co-activator PGC-1 α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

  2. 2.

    et al. PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407–414 (2006).

  3. 3.

    et al. Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRgamma. Cell Metab. 13, 283–293 (2011).

  4. 4.

    et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 12, 633–642 (2010).

  5. 5.

    et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827–839 (2011).

  6. 6.

    et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 282, 30014–30021 (2007).

  7. 7.

    et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101 (2005).

  8. 8.

    & Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler. Thromb. Vasc. Biol. 30, 1529–1534 (2010).

  9. 9.

    et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology 135, 689–698 (2008).

  10. 10.

    et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786–1789 (2007).

  11. 11.

    et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).

  12. 12.

    et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

  13. 13.

    et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657–667 (2012).

  14. 14.

    et al. The orphan nuclear receptor Rev-Erbα is a peroxisome proliferator-activated receptor (PPAR) γ target gene and promotes PPARγ-induced adipocyte differentiation. J. Biol. Chem. 278, 37672–37680 (2003).

  15. 15.

    & Bifunctional role of Rev-erbα in adipocyte differentiation. Mol. Cell Biol. 28, 2213–2220 (2008).

  16. 16.

    et al. The nuclear receptor Rev-erbα is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages. Mol. Endocrinol. 22, 1797–1811 (2008).

  17. 17.

    et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011).

  18. 18.

    , , , & Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbα. Genes Dev. 23, 2201–2209 (2009).

  19. 19.

    et al. PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis. Proc. Natl. Acad. Sci. USA 106, 22510–22515 (2009).

  20. 20.

    et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

  21. 21.

    , , & Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

  22. 22.

    et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. 108, E149–E158 (2011).

  23. 23.

    et al. Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle -insight from analysis of a transgenic mouse model. Diabetes Res. Clin. Pract. 77 (suppl. 1), S92–S98 (2007).

  24. 24.

    et al. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol. Cell Biol. 26, 8217–8227 (2006).

  25. 25.

    et al. Skeletal muscle dysfunction in muscle-specific LKB1 knockout mice. J. Appl. Physiol. 108, 1775–1785 (2010).

  26. 26.

    & The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

  27. 27.

    & Autophagy and metabolism. Science 330, 1344–1348 (2010).

  28. 28.

    , & Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

  29. 29.

    et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

  30. 30.

    et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol. Cell 43, 572–585 (2011).

  31. 31.

    et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008).

  32. 32.

    et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

  33. 33.

    et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374–3379 (2008).

  34. 34.

    Circadian topology of metabolism. Nature 491, 348–356 (2012).

  35. 35.

    et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 31, 86–95 (2007).

  36. 36.

    et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. USA 104, 3342–3347 (2007).

  37. 37.

    et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl. Acad. Sci. USA 107, 19090–19095 (2010).

  38. 38.

    et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology 135, 689–698 (2008).

  39. 39.

    et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705 (2004).

  40. 40.

    et al. Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription. J. Lipid Res. 43, 2172–2179 (2002).

  41. 41.

    et al. Deficency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).

  42. 42.

    & Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

  43. 43.

    et al. Steep increase in myonuclear domain size during infancy. Anat. Rec. 296, 192–197 (2013).

  44. 44.

    et al. A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy 7, 83–90 (2011).

  45. 45.

    , & Combining chromatin immunoprecipitation and oligonucleotide tiling arrays (ChIP-Chip) for functional genomic studies. Methods Mol. Biol. 556, 155–164 (2009).

Download references

Acknowledgements

This research was supported by a Marie Curie International Reintegration Grant (FP7) (to H.D.), the European Commission (FP7) consortium Eurhythdia (to B.S.), Région Nord Pas-de-Calais/Fonds Européen de Développement Régional (to B.S.), a Contrat de Projet Etat-Région 'starting grant' (to H.D.), the European Genomic Institute for Diabetes (EGID, ANR-10-LABX-46) (to B.S.), an unrestricted Instituts Thématiques Multi-Organismes/Astra Zeneca grant (to B.S.), a joint Société Francophone du Diabète/Merck Sharp & Dohme research fellowship (to H.D.), a research grant from the European Foundation for the Study of Diabetes/Lilly (to H.D.), US National Institutes of Health grants (MH093429 and DK080201) (to T.P.B.), a National Research Service Award (DK088499) (to L.A.S.) and a VICI research grant for innovative research from the Netherlands Organization for Scientific Research (918.96.618) (to P.S.). B.S. receives support from the Institut Universitaire de France.

Author information

Author notes

    • Estelle Woldt
    •  & Yasmine Sebti

    These authors contributed equally to this work.

Affiliations

  1. Institut Pasteur de Lille, Lille, France.

    • Estelle Woldt
    • , Yasmine Sebti
    • , Christian Duhem
    • , Jérôme Eeckhoute
    • , Charlotte Paquet
    • , Stéphane Delhaye
    • , Philippe Lefebvre
    • , Bart Staels
    •  & Hélène Duez
  2. Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1011 'Nuclear Receptors, Cardiovascular Diseases and Diabetes', Lille, France.

    • Estelle Woldt
    • , Yasmine Sebti
    • , Christian Duhem
    • , Jérôme Eeckhoute
    • , Charlotte Paquet
    • , Stéphane Delhaye
    • , Philippe Lefebvre
    • , Bart Staels
    •  & Hélène Duez
  3. Faculté des Sciences Pharmaceutiques et Biologiques et Faculté de Médecine, Université Lille Nord de France, Lille, France.

    • Estelle Woldt
    • , Yasmine Sebti
    • , Christian Duhem
    • , Jérôme Eeckhoute
    • , Charlotte Paquet
    • , Stéphane Delhaye
    • , Philippe Lefebvre
    • , Bart Staels
    •  & Hélène Duez
  4. Université du Droit et de la Santé de Lille, Lille, France.

    • Estelle Woldt
    • , Yasmine Sebti
    • , Christian Duhem
    • , Steve Lancel
    • , Jérôme Eeckhoute
    • , Charlotte Paquet
    • , Stéphane Delhaye
    • , Philippe Lefebvre
    • , Rémi Nevière
    • , Bart Staels
    •  & Hélène Duez
  5. European Genomic Institute for Diabetes, Lille, France.

    • Estelle Woldt
    • , Yasmine Sebti
    • , Christian Duhem
    • , Jérôme Eeckhoute
    • , Charlotte Paquet
    • , Stéphane Delhaye
    • , Philippe Lefebvre
    • , Bart Staels
    •  & Hélène Duez
  6. Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA.

    • Laura A Solt
    • , Youseung Shin
    • , Theodore M Kamenecka
    •  & Thomas P Burris
  7. Département de Physiologie Equipe d'Accueil 4484, Faculté de Médecine, Université Lille Nord de France, Lille, France.

    • Steve Lancel
    •  & Rémi Nevière
  8. School for Nutrition, Toxicology and Metabolism, Department of Human Biology and Department of Human Movement Sciences, Maastricht University Medical Center, Maastricht, The Netherlands.

    • Matthijs K C Hesselink
    • , Gert Schaart
    •  & Patrick Schrauwen

Authors

  1. Search for Estelle Woldt in:

  2. Search for Yasmine Sebti in:

  3. Search for Laura A Solt in:

  4. Search for Christian Duhem in:

  5. Search for Steve Lancel in:

  6. Search for Jérôme Eeckhoute in:

  7. Search for Matthijs K C Hesselink in:

  8. Search for Charlotte Paquet in:

  9. Search for Stéphane Delhaye in:

  10. Search for Youseung Shin in:

  11. Search for Theodore M Kamenecka in:

  12. Search for Gert Schaart in:

  13. Search for Philippe Lefebvre in:

  14. Search for Rémi Nevière in:

  15. Search for Thomas P Burris in:

  16. Search for Patrick Schrauwen in:

  17. Search for Bart Staels in:

  18. Search for Hélène Duez in:

Contributions

E.W., Y. Sebti, B.S. and H.D. were responsible for the study design, data analysis and interpretation and wrote the manuscript. E.W., Y. Sebti, L.A.S., C.D., S.L., C.P., S.D., G.S. and R.N. performed the experiments and data analysis. J.E., P.L., M.K.C.H., P.S. and T.P.B. were involved in data analysis. Y. Shin and T.M.K. were involved in Rev-erb-α ligand chemistry.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Bart Staels or Hélène Duez.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–8 and Supplementary Tables 1–2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nm.3213

Further reading