miR-214 targets ATF4 to inhibit bone formation


Emerging evidence indicates that microRNAs (miRNAs) have important roles in regulating osteogenic differentiation and bone formation. Thus far, no study has established the pathophysiological role for miRNAs identified in human osteoporotic bone specimens. Here we found that elevated miR-214 levels correlated with a lower degree of bone formation in bone specimens from aged patients with fractures. We also found that osteoblast-specific manipulation of miR-214 levels by miR-214 antagomir treatment in miR-214 transgenic, ovariectomized, or hindlimb-unloaded mice revealed an inhibitory role of miR-214 in regulating bone formation. Further, in vitro osteoblast activity and matrix mineralization were promoted by antagomir-214 and decreased by agomir-214, and miR-214 directly targeted ATF4 to inhibit osteoblast activity. These data suggest that miR-214 has a crucial role in suppressing bone formation and that miR-214 inhibition in osteoblasts may be a potential anabolic strategy for ameliorating osteoporosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: miR-214 levels negatively correlate with reduced bone formation in both human and mouse bone specimens.
Figure 2: miR-214 inhibits osteoblast activity and matrix mineralization in vitro.
Figure 3: miR-214 targets ATF4 to functionally inhibit osteoblast activity in vitro.
Figure 4: Characterization of bone phenotypes in osteoblast-specific miR-214 transgenic mice and functional rescue by antagomir-214.
Figure 5: Bone-targeted antagomir-214 promotes osteoblastic bone formation, improves trabecular architecture and increases bone mass in aged ovariectomy-induced osteoporotic mice.
Figure 6: Therapeutic inhibition of miR-214 with the bone-targeting delivery system counteracts the decrease in bone formation in hindlimb-unloaded mice.


  1. 1

    Marx, J. Coming to grips with bone loss. Science 305, 1420–1422 (2004).

    CAS  PubMed  Google Scholar 

  2. 2

    Karsenty, G. The complexities of skeletal biology. Nature 423, 316–318 (2003).

    CAS  PubMed  Google Scholar 

  3. 3

    Alliston, T. & Derynck, R. Medicine: interfering with bone remodelling. Nature 416, 686–687 (2002).

    CAS  PubMed  Google Scholar 

  4. 4

    Rodan, G.A. & Martin, T.J. Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).

    CAS  PubMed  Google Scholar 

  5. 5

    Tromans, A. Physiology: foreman in the bone factory. Nature 425, 909 (2003).

    CAS  PubMed  Google Scholar 

  6. 6

    Harada, S. & Rodan, G.A. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003).

    CAS  Google Scholar 

  7. 7

    Boyle, W.J., Simonet, W.S. & Lacey, D.L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    CAS  Google Scholar 

  8. 8

    Rigoutsos, I. & Furnari, F. Gene-expression forum: decoy for microRNAs. Nature 465, 1016–1017 (2010).

    CAS  PubMed  Google Scholar 

  9. 9

    Chitwood, D.H. & Timmermans, M.C. Small RNAs are on the move. Nature 467, 415–419 (2010).

    CAS  PubMed  Google Scholar 

  10. 10

    Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    CAS  Google Scholar 

  11. 11

    Kosik, K.S. MicroRNAs and cellular phenotypy. Cell 143, 21–26 (2010).

    CAS  PubMed  Google Scholar 

  12. 12

    Zhang, J. et al. Effects of miR-335–5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J. Bone Miner. Res. 26, 1953–1963 (2011).

    CAS  PubMed  Google Scholar 

  13. 13

    Eskildsen, T. et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc. Natl. Acad. Sci. USA 108, 6139–6144 (2011).

    PubMed  Google Scholar 

  14. 14

    Itoh, T., Nozawa, Y. & Akao, Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2–induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J. Biol. Chem. 284, 19272–19279 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Huang, J., Zhao, L., Xing, L. & Chen, D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28, 357–364 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Itoh, T., Takeda, S. & Akao, Y. MicroRNA-208 modulates BMP-2–stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J. Biol. Chem. 285, 27745–27752 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Inose, H. et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc. Natl. Acad. Sci. USA 106, 20794–20799 (2009).

    CAS  PubMed  Google Scholar 

  18. 18

    Li, Z. et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc. Natl. Acad. Sci. USA 105, 13906–13911 (2008).

    CAS  PubMed  Google Scholar 

  19. 19

    Kapinas, K., Kessler, C., Ricks, T., Gronowicz, G. & Delany, A.M. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J. Biol. Chem. 285, 25221–25231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Hassan, M.Q. et al. A network connecting Runx2, SATB2, and the miR-23a27a24–2 cluster regulates the osteoblast differentiation program. Proc. Natl. Acad. Sci. USA 107, 19879–19884 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Li, H. et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 119, 3666–3677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Hu, R. et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J. Biol. Chem. 286, 12328–12339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Mizoguchi, F. et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J. Cell. Biochem. 109, 866–875 (2010).

    CAS  PubMed  Google Scholar 

  24. 24

    Gaur, T. et al. Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev. Biol. 340, 10–21 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117, 387–398 (2004).

    CAS  PubMed  Google Scholar 

  26. 26

    Kobayashi, T. et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc. Natl. Acad. Sci. USA 105, 1949–1954 (2008).

    CAS  PubMed  Google Scholar 

  27. 27

    Zhang, G. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18, 307–314 (2012).

    PubMed  Google Scholar 

  28. 28

    Sachdeva, M. & Mo, Y.Y. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 70, 378–387 (2010).

    CAS  PubMed  Google Scholar 

  29. 29

    Li, Z. et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem. 284, 15676–15684 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Penna, E. et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 30, 1990–2007 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Ueda, T. et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 11, 136–146 (2010).

    CAS  PubMed  Google Scholar 

  32. 32

    Yin, G. et al. TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene 29, 3545–3553 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Yang, H. et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68, 425–433 (2008).

    CAS  PubMed  Google Scholar 

  34. 34

    Dey, S. et al. Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J. Biol. Chem. 285, 33165–33174 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Yamaguchi, S. et al. ATF4-mediated induction of 4E–BP1 contributes to pancreatic β cell survival under endoplasmic reticulum stress. Cell Metab. 7, 269–276 (2008).

    CAS  PubMed  Google Scholar 

  36. 36

    Black, D.M. et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N. Engl. J. Med. 353, 555–565 (2005).

    CAS  PubMed  Google Scholar 

  37. 37

    Finkelstein, J.S. et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N. Engl. J. Med. 349, 1216–1226 (2003).

    CAS  PubMed  Google Scholar 

  38. 38

    Fuller, K.E. Effects of parathyroid hormone and alendronate alone or in combination in osteoporosis. N. Engl. J. Med. 350, 189–192, author reply 189–192 (2004).

    PubMed  Google Scholar 

  39. 39

    Black, D.M. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 349, 1207–1215 (2003).

    CAS  PubMed  Google Scholar 

  40. 40

    Cosman, F. et al. Daily and cyclic parathyroid hormone in women receiving alendronate. N. Engl. J. Med. 353, 566–575 (2005).

    CAS  PubMed  Google Scholar 

  41. 41

    Miller, P.D. Effects of parathyroid hormone and alendronate alone or in combination in osteoporosis. N. Engl. J. Med. 350, 189–192, author reply 189–192 (2004).

    PubMed  Google Scholar 

  42. 42

    Guo, B.S., Cheung, K.K., Yeung, S.S., Zhang, B.T. & Yeung, E.W. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS ONE 7, e30348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Zhang, B.T. et al. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension. BMC Cell Biol. 11, 87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Dierkes, C. et al. Catabolic properties of microdissected human endosteal bone lining cells. Calcif. Tissue Int. 84, 146–155 (2009).

    CAS  PubMed  Google Scholar 

  45. 45

    Kase, M., Houtani, T., Sakuma, S., Tsutsumi, T. & Sugimoto, T. Laser microdissection combined with immunohistochemistry on serial thin tissue sections: a method allowing efficient mRNA analysis. Histochem. Cell Biol. 127, 215–219 (2007).

    CAS  PubMed  Google Scholar 

  46. 46

    Amin, S. et al. High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J. Bone Miner. Res. 22, 799–807 (2007).

    CAS  PubMed  Google Scholar 

  47. 47

    Addison, W.N., Azari, F., Sorensen, E.S., Kaartinen, M.T. & McKee, M.D. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J. Biol. Chem. 282, 15872–15883 (2007).

    CAS  PubMed  Google Scholar 

  48. 48

    Vermes, C. et al. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts. J. Bone Miner. Res. 15, 1756–1765 (2000).

    CAS  PubMed  Google Scholar 

  49. 49

    Juan, A.H., Kumar, R.M., Marx, J.G., Young, R.A. & Sartorelli, V. Mir-214–dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell 36, 61–74 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Iwaniec, U.T. et al. PTH stimulates bone formation in mice deficient in Lrp5. J. Bone Miner. Res. 22, 394–402 (2007).

    CAS  PubMed  Google Scholar 

Download references


We thank the academic staff (L. Qin and L. Hung) from the Chinese University of Hong Kong and the research staff from G.Z.'s lab (http://www.gezhanglab.com/index.php) at Hong Kong Baptist University for providing critical comments and technical support. We thank X. Yang (Institute of Biotechnology) for providing the Bglap2 promoter vector. We also thank L. Zhang, K. Guan and H. Ouyang for constructive suggestions and careful revisions to this manuscript. This work was supported by the National Basic Research Program of China 973 program (2011CB711003 and 2011CB707704), State Key Lab of Space Medicine Fundamentals and Application Grants (SMFA10A02 and SMFA12B01), National Natural Science Foundation Projects (31170811, 31000386 and 81272045), the Hong Kong General Research Fund (HKBU 479111 and HKBU478312) and the Research Grants Council/Natural Science Foundation Council Joint Research Scheme (N_HKBU435/12).

Author information




X.W. and B.G. performed the majority of the experiments, analyzed data and prepared the manuscript. J.P., A.W., X.P., X.X. and A.H. collected human bone samples. Z.Y. and H.W. helped with in vivo treatment. Q.L., K.L., J.S., Q.S., S.L., Yuheng Li and P.Z. assisted with in vitro experiments. G.K., H.C. and M.Z. maintained the mice. Z.H. helped with microdissection analysis. D.L. and T.T. helped with data analysis. Yinghui Li, Z.B., Y.B., A.L. and F.H. provided suggestions for the project and critically reviewed the manuscript. Yingxian Li and G.Z. supervised the project and wrote most of the manuscript.

Corresponding authors

Correspondence to Ge Zhang or Yingxian Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1701 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Guo, B., Li, Q. et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med 19, 93–100 (2013). https://doi.org/10.1038/nm.3026

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing