Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

IgE and mast cells in allergic disease

Abstract

Immunoglobulin E (IgE) antibodies and mast cells have been so convincingly linked to the pathophysiology of anaphylaxis and other acute allergic reactions that it can be difficult to think of them in other contexts. However, a large body of evidence now suggests that both IgE and mast cells are also key drivers of the long-term pathophysiological changes and tissue remodeling associated with chronic allergic inflammation in asthma and other settings. Such potential roles include IgE-dependent regulation of mast-cell functions, actions of IgE that are largely independent of mast cells and roles of mast cells that do not directly involve IgE. In this review, we discuss findings supporting the conclusion that IgE and mast cells can have both interdependent and independent roles in the complex immune responses that manifest clinically as asthma and other allergic disorders.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Allergen sensitization and IgE production.
Figure 2: The early, immediate hypersensitivity, phase of antigen-induced airway inflammation.
Figure 3: Roles of IgE and mast cells in chronic airway inflammation and tissue remodeling.

References

  1. Gould, H.J. & Sutton, B.J. IgE in allergy and asthma today. Nat. Rev. Immunol. 8, 205–217 (2008).

    CAS  Google Scholar 

  2. Burton, O.T. & Oettgen, H.C. Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol. Rev. 242, 128–143 (2011).

    CAS  Google Scholar 

  3. Platzer, B., Ruiter, F., van der Mee, J. & Fiebiger, E. Soluble IgE receptors—elements of the IgE network. Immunol. Lett. 141, 36–44 (2011).

    CAS  Google Scholar 

  4. Galli, S.J. & Tsai, M. Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur. J. Immunol. 40, 1843–1851 (2010).

    CAS  Google Scholar 

  5. Hofmann, A.M. & Abraham, S.N. New roles for mast cells in pathogen defense and allergic disease. Discov. Med. 9, 79–83 (2010).

    Google Scholar 

  6. Moon, T.C. et al. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. 3, 111–128 (2010).

    CAS  Google Scholar 

  7. Gilfillan, A.M., Austin, S.J. & Metcalfe, D.D. Mast cell biology: introduction and overview. Adv. Exp. Med. Biol. 716, 2–12 (2011).

    CAS  Google Scholar 

  8. Stanworth, D.R. The discovery of IgE. Allergy 48, 67–71 (1993).

    CAS  Google Scholar 

  9. Ishizaka, K., Ishizaka, T. & Hornbrook, M.M. Physico-chemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic activity. J. Immunol. 97, 75–85 (1966).

    CAS  Google Scholar 

  10. Johansson, S.G.O. & Bennich, H. Studies on a new class of immunoglobulin. I. Immunological properties. in Nobel Symposium 3. Gamma Globulins: Structure and Control of Biosynthesis. (ed. Kilander, J.) 193–197 (Almqvist and Wiksell, Stockholm, 1967).

  11. Geha, R.S., Jabara, H.H. & Brodeur, S.R. The regulation of immunoglobulin E class-switch recombination. Nat. Rev. Immunol. 3, 721–732 (2003).

    CAS  Google Scholar 

  12. Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    CAS  Google Scholar 

  13. Ryzhov, S. et al. Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J. Immunol. 172, 7726–7733 (2004).

    CAS  Google Scholar 

  14. Takhar, P. et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J. Allergy Clin. Immunol. 119, 213–218 (2007).

    CAS  Google Scholar 

  15. Coëffier, M., Lorentz, A., Manns, M.P. & Bischoff, S.C. Epsilon germ-line and IL-4 transcripts are expressed in human intestinal mucosa and enhanced in patients with food allergy. Allergy 60, 822–827 (2005).

    Google Scholar 

  16. KleinJan, A., Vinke, J.G., Severijnen, L.W. & Fokkens, W.J. Local production and detection of (specific) IgE in nasal B-cells and plasma cells of allergic rhinitis patients. Eur. Respir. J. 15, 491–497 (2000).

    CAS  Google Scholar 

  17. Acharya, M. et al. CD23/FcɛRII: molecular multi-tasking. Clin. Exp. Immunol. 162, 12–23 (2010).

    CAS  Google Scholar 

  18. Gibb, D.R. et al. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J. Exp. Med. 207, 623–635 (2010).

    CAS  Google Scholar 

  19. Tu, Y. & Perdue, M.H. CD23-mediated transport of IgE/immune complexes across human intestinal epithelium: role of p38 MAPK. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G532–G538 (2006).

    CAS  Google Scholar 

  20. Palaniyandi, S., Tomei, E., Li, Z., Conrad, D.H. & Zhu, X. CD23-dependent transcytosis of IgE and immune complex across the polarized human respiratory epithelial cells. J. Immunol. 186, 3484–3496 (2011).

    CAS  Google Scholar 

  21. Punnonen, J. et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc. Natl. Acad. Sci. USA 90, 3730–3734 (1993).

    CAS  Google Scholar 

  22. Zheng, T., Yu, J., Oh, M.H. & Zhu, Z. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol. Res. 3, 67–73 (2011).

    Google Scholar 

  23. Kim, B.E. & Leung, D.Y. Epidermal barrier in atopic dermatitis. Allergy Asthma Immunol. Res. 4, 12–16 (2012).

    Google Scholar 

  24. Ying, S., Meng, Q., Corrigan, C.J. & Lee, T.H. Lack of filaggrin expression in the human bronchial mucosa. J. Allergy Clin. Immunol. 118, 1386–1388 (2006).

    CAS  Google Scholar 

  25. McLean, W.H. et al. Filaggrin variants confer susceptibility to asthma. J. Allergy Clin. Immunol. 121, 1294–1295, author reply 1295–1296 (2008).

    Google Scholar 

  26. Vouldoukis, I. et al. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway. PLoS ONE 6, e18289 (2011).

    CAS  Google Scholar 

  27. Plater-Zyberk, C. & Bonnefoy, J.Y. Marked amelioration of established collagen-induced arthritis by treatment with antibodies to CD23 in vivo. Nat. Med. 1, 781–785 (1995).

    CAS  Google Scholar 

  28. Karagiannis, S.N. et al. IgE-antibody–dependent immunotherapy of solid tumors: cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. J. Immunol. 179, 2832–2843 (2007).

    CAS  Google Scholar 

  29. Yu, L.C. et al. Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology 121, 370–381 (2001).

    CAS  Google Scholar 

  30. Thornton, C.A. et al. Fetal exposure to intact immunoglobulin E occurs via the gastrointestinal tract. Clin. Exp. Allergy 33, 306–311 (2003).

    CAS  Google Scholar 

  31. Tu, Y. et al. CD23-mediated IgE transport across human intestinal epithelium: inhibition by blocking sites of translation or binding. Gastroenterology 129, 928–940 (2005).

    CAS  Google Scholar 

  32. Berin, M.C., Li, H. & Sperber, K. Antibody-mediated antigen sampling across intestinal epithelial barriers. Ann. NY Acad. Sci. 1072, 253–261 (2006).

    CAS  Google Scholar 

  33. Lima, J.O. et al. Early expression of iɛ, CD23 (FcɛRII), IL-4Rα, and IgE in the human fetus. J. Allergy Clin. Immunol. 106, 911–917 (2000).

    CAS  Google Scholar 

  34. Bergmann, R.L. et al. Predictability of early atopy by cord blood-IgE and parental history. Clin. Exp. Allergy 27, 752–760 (1997).

    CAS  Google Scholar 

  35. Conrad, D.H., Ford, J.W., Sturgill, J.L. & Gibb, D.R. CD23: an overlooked regulator of allergic disease. Curr. Allergy Asthma Rep. 7, 331–337 (2007).

    CAS  Google Scholar 

  36. Bønnelykke, K., Pipper, C.B. & Bisgaard, H. Transfer of maternal IgE can be a common cause of increased IgE levels in cord blood. J. Allergy Clin. Immunol. 126, 657–663 (2010).

    Google Scholar 

  37. Kraft, S., Rana, S., Jouvin, M.H. & Kinet, J.P. The role of the FcɛRI β-chain in allergic diseases. Int. Arch. Allergy Immunol. 135, 62–72 (2004).

    CAS  Google Scholar 

  38. Kraft, S. & Kinet, J.P. New developments in FcɛRI regulation, function and inhibition. Nat. Rev. Immunol. 7, 365–378 (2007).

    CAS  Google Scholar 

  39. Gounni, A.S. et al. Human neutrophils express the high-affinity receptor for immunoglobulin E (Fc ɛ RI): role in asthma. FASEB J. 15, 940–949 (2001).

    CAS  Google Scholar 

  40. Porcherie, A. et al. Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria. J. Exp. Med. 208, 2225–2236 (2011).

    CAS  Google Scholar 

  41. Grayson, M.H. et al. Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J. Exp. Med. 204, 2759–2769 (2007).

    CAS  Google Scholar 

  42. Cheung, D.S. et al. Cutting edge: CD49d+ neutrophils induce FcɛRI expression on lung dendritic cells in a mouse model of postviral asthma. J. Immunol. 185, 4983–4987 (2010).

    CAS  Google Scholar 

  43. van der Kleij, H. et al. Evidence for neuronal expression of functional Fc (ɛ and γ) receptors. J. Allergy Clin. Immunol. 125, 757–760 (2010).

    CAS  Google Scholar 

  44. Redhu, N.S. et al. IgE induces transcriptional regulation of thymic stromal lymphopoietin in human airway smooth muscle cells. J. Allergy Clin. Immunol. 128, 892–896 (2011).

    CAS  Google Scholar 

  45. Campbell, A.M. et al. Expression of the high-affinity receptor for IgE on bronchial epithelial cells of asthmatics. Am. J. Respir. Cell Mol. Biol. 19, 92–97 (1998).

    CAS  Google Scholar 

  46. Sutton, B.J. & Gould, H.J. The human IgE network. Nature 366, 421–428 (1993).

    CAS  Google Scholar 

  47. Jawdat, D.M., Albert, E.J., Rowden, G., Haidl, I.D. & Marshall, J.S. IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J. Immunol. 173, 5275–5282 (2004).

    CAS  Google Scholar 

  48. Suto, H. et al. Mast cell–associated TNF promotes dendritic cell migration. J. Immunol. 176, 4102–4112 (2006).

    CAS  Google Scholar 

  49. Dudeck, A. et al. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34, 973–984 (2011).

    CAS  Google Scholar 

  50. Otsuka, A. et al. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS ONE 6, e25538 (2011).

    CAS  Google Scholar 

  51. Borkowski, T.A., Jouvin, M.H., Lin, S.Y. & Kinet, J.P. Minimal requirements for IgE-mediated regulation of surface FcɛRI. J. Immunol. 167, 1290–1296 (2001).

    CAS  Google Scholar 

  52. Furuichi, K., Rivera, J. & Isersky, C. The receptor for immunoglobulin E on rat basophilic leukemia cells: effect of ligand binding on receptor expression. Proc. Natl. Acad. Sci. USA 82, 1522–1525 (1985).

    CAS  Google Scholar 

  53. Hsu, C. & MacGlashan, D. Jr. IgE antibody up-regulates high affinity IgE binding on murine bone marrow-derived mast cells. Immunol. Lett. 52, 129–134 (1996).

    CAS  Google Scholar 

  54. Yamaguchi, M. et al. IgE enhances mouse mast cell FcɛRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J. Exp. Med. 185, 663–672 (1997).

    CAS  Google Scholar 

  55. Lantz, C.S. et al. IgE regulates mouse basophil FcɛRI expression in vivo. J. Immunol. 158, 2517–2521 (1997).

    CAS  Google Scholar 

  56. MacGlashan, D.W. Jr. et al. Down-regulation of FcɛRI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J. Immunol. 158, 1438–1445 (1997).

    CAS  Google Scholar 

  57. Beck, L.A., Marcotte, G.V., MacGlashan, D., Togias, A. & Saini, S. Omalizumab-induced reductions in mast cell FcɛRI expression and function. J. Allergy Clin. Immunol. 114, 527–530 (2004).

    CAS  Google Scholar 

  58. Yamaguchi, M. et al. IgE enhances Fcɛ receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fcɛ receptor I expression and mediator release. J. Immunol. 162, 5455–5465 (1999).

    CAS  Google Scholar 

  59. Kashiwakura, J., Otani, I.M. & Kawakami, T. Monomeric IgE and mast cell development, survival and function. Adv. Exp. Med. Biol. 716, 29–46 (2011).

    CAS  Google Scholar 

  60. Gilfillan, A.M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6, 218–230 (2006).

    CAS  Google Scholar 

  61. Rivera, J. & Gilfillan, A.M. Molecular regulation of mast cell activation. J. Allergy Clin. Immunol. 117, 1214–1225, quiz 1226 (2006).

    CAS  Google Scholar 

  62. Boyce, J.A. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol. Rev. 217, 168–185 (2007).

    CAS  Google Scholar 

  63. Moiseeva, E.P. & Bradding, P. Mast cells in lung inflammation. Adv. Exp. Med. Biol. 716, 235–269 (2011).

    CAS  Google Scholar 

  64. Groot Kormelink, T., Thio, M., Blokhuis, B.R., Nijkamp, F.P. & Redegeld, F.A. Atopic and non-atopic allergic disorders: current insights into the possible involvement of free immunoglobulin light chains. Clin. Exp. Allergy 39, 33–42 (2009).

    CAS  Google Scholar 

  65. Ring, J., Grosber, M., Mohrenschlager, M. & Brockow, K. Anaphylaxis: acute treatment and management. Chem. Immunol. Allergy 95, 201–210 (2010).

    Google Scholar 

  66. Galli, S.J., Tsai, M. & Piliponsky, A.M. The development of allergic inflammation. Nature 454, 445–454 (2008).

    CAS  Google Scholar 

  67. Mayr, S.I. et al. IgE-dependent mast cell activation potentiates airway responses in murine asthma models. J. Immunol. 169, 2061–2068 (2002).

    CAS  Google Scholar 

  68. Yu, M. et al. Mast cells can promote the development of multiple features of chronic asthma in mice. J. Clin. Invest. 116, 1633–1641 (2006).

    CAS  Google Scholar 

  69. Yu, M. et al. Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma. J. Clin. Invest. 121, 3133–3143 (2011).

    CAS  Google Scholar 

  70. Larché, M., Robinson, D.S. & Kay, A.B. The role of T lymphocytes in the pathogenesis of asthma. J. Allergy Clin. Immunol. 111, 450–463, quiz 464 (2003).

    Google Scholar 

  71. Ochi, H., De Jesus, N.H., Hsieh, F.H., Austen, K.F. & Boyce, J.A. IL-4 and -5 prime human mast cells for different profiles of IgE-dependent cytokine production. Proc. Natl. Acad. Sci. USA 97, 10509–10513 (2000).

    CAS  Google Scholar 

  72. Allakhverdi, Z., Smith, D.E., Comeau, M.R. & Delespesse, G. Cutting edge: the ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J. Immunol. 179, 2051–2054 (2007).

    CAS  Google Scholar 

  73. Ho, L.H. et al. IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcɛRI signals. J. Leukoc. Biol. 82, 1481–1490 (2007).

    CAS  Google Scholar 

  74. Iikura, M. et al. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab. Invest. 87, 971–978 (2007).

    CAS  Google Scholar 

  75. Hua, X., Chason, K.D., Patel, J.Y., Naselsky, W.C. & Tilley, S.L. IL-4 amplifies the pro-inflammatory effect of adenosine in human mast cells by changing expression levels of adenosine receptors. PLoS ONE 6, e24947 (2011).

    CAS  Google Scholar 

  76. Olivera, A. & Rivera, J. An emerging role for the lipid mediator sphingosine-1-phosphate in mast cell effector function and allergic disease. Adv. Exp. Med. Biol. 716, 123–142 (2011).

    CAS  Google Scholar 

  77. Beer, F. et al. Role of β-chemokines in mast cell activation and type I hypersensitivity reactions in the conjunctiva: in vivo and in vitro studies. Immunol. Rev. 217, 96–104 (2007).

    CAS  Google Scholar 

  78. Galli, S.J. et al. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).

    CAS  Google Scholar 

  79. Galli, S.J., Grimbaldeston, M. & Tsai, M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat. Rev. Immunol. 8, 478–486 (2008).

    CAS  Google Scholar 

  80. Galli, S.J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 6, 135–142 (2005).

    CAS  Google Scholar 

  81. Nakae, S. et al. Mast cells enhance T cell activation: importance of mast cell–derived TNF. Proc. Natl. Acad. Sci. USA 102, 6467–6472 (2005).

    CAS  Google Scholar 

  82. Nakae, S. et al. Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J. Immunol. 176, 2238–2248 (2006).

    CAS  Google Scholar 

  83. Gri, G. et al. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40–OX40L interaction. Immunity 29, 771–781 (2008).

    CAS  Google Scholar 

  84. Sibilano, R. et al. Technical advance: soluble OX40 molecule mimics regulatory T cell modulatory activity on FcɛRI-dependent mast cell degranulation. J. Leukoc. Biol. 90, 831–838 (2011).

    CAS  Google Scholar 

  85. Bryce, P.J. et al. Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity 20, 381–392 (2004).

    CAS  Google Scholar 

  86. Liu, F.T. Regulatory roles of galectins in the immune response. Int. Arch. Allergy Immunol. 136, 385–400 (2005).

    CAS  Google Scholar 

  87. Ge, X.N. et al. Allergen-induced airway remodeling is impaired in galectin-3–deficient mice. J. Immunol. 185, 1205–1214 (2010).

    CAS  Google Scholar 

  88. Saegusa, J. et al. Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am. J. Pathol. 174, 922–931 (2009).

    CAS  Google Scholar 

  89. Marone, G., Triggiani, M. & de Paulis, A. Mast cells and basophils: friends as well as foes in bronchial asthma? Trends Immunol. 26, 25–31 (2005).

    CAS  Google Scholar 

  90. Karasuyama, H., Mukai, K., Obata, K., Tsujimura, Y. & Wada, T. Nonredundant roles of basophils in immunity. Annu. Rev. Immunol. 29, 45–69 (2011).

    CAS  Google Scholar 

  91. Kaur, D. et al. Mast cell-airway smooth muscle crosstalk: the role of thymic stromal lymphopoietin. Chest published online, doi:10.1378/chest.11-1782 (3 November 2011).

  92. Laprise, C. et al. Functional classes of bronchial mucosa genes that are differentially expressed in asthma. BMC Genomics 5, 21 (2004).

    Google Scholar 

  93. Waern, I. et al. Mouse mast cell protease 4 is the major chymase in murine airways and has a protective role in allergic airway inflammation. J. Immunol. 183, 6369–6376 (2009).

    CAS  Google Scholar 

  94. Brightling, C.E. et al. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 346, 1699–1705 (2002).

    Google Scholar 

  95. Dougherty, R.H. et al. Accumulation of intraepithelial mast cells with a unique protease phenotype in TH2-high asthma. J. Allergy Clin. Immunol. 125, 1046–1053 (2010).

    CAS  Google Scholar 

  96. Balzar, S. et al. Mast cell phenotype, location, and activation in severe asthma. Data from the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 183, 299–309 (2011).

    Google Scholar 

  97. Carroll, N.G., Mutavdzic, S. & James, A.L. Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur. Respir. J. 19, 879–885 (2002).

    CAS  Google Scholar 

  98. Carroll, N.G., Mutavdzic, S. & James, A.L. Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. Thorax 57, 677–682 (2002).

    CAS  Google Scholar 

  99. Ryan, J.J. et al. Mast cell homeostasis: a fundamental aspect of allergic disease. Crit. Rev. Immunol. 27, 15–32 (2007).

    CAS  Google Scholar 

  100. Holgate, S.T. Pathophysiology of asthma: what has our current understanding taught us about new therapeutic approaches? J. Allergy Clin. Immunol. 128, 495–505 (2011).

    CAS  Google Scholar 

  101. Barnes, P.J. Glucocorticosteroids: current and future directions. Br. J. Pharmacol. 163, 29–43 (2011).

    CAS  Google Scholar 

  102. Wershil, B.K. et al. Dexamethasone or cyclosporin A suppress mast cell-leukocyte cytokine cascades. Multiple mechanisms of inhibition of IgE- and mast cell–dependent cutaneous inflammation in the mouse. J. Immunol. 154, 1391–1398 (1995).

    CAS  Google Scholar 

  103. Matsuda, K. et al. Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J. Allergy Clin. Immunol. 116, 1357–1363 (2005).

    CAS  Google Scholar 

  104. Kato, A. et al. Dexamethasone and FK506 inhibit expression of distinct subsets of chemokines in human mast cells. J. Immunol. 182, 7233–7243 (2009).

    CAS  Google Scholar 

  105. Holgate, S.T., Djukanovic, R., Casale, T. & Bousquet, J. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin. Exp. Allergy 35, 408–416 (2005).

    CAS  Google Scholar 

  106. Pelaia, G. et al. Update on optimal use of omalizumab in management of asthma. J. Asthma Allergy 4, 49–59 (2011).

    CAS  Google Scholar 

  107. Rafi, A. et al. Effects of omalizumab in patients with food allergy. Allergy Asthma Proc. 31, 76–83 (2010).

    Google Scholar 

  108. Sheinkopf, L.E., Rafi, A.W., Do, L.T., Katz, R.M. & Klaustermeyer, W.B. Efficacy of omalizumab in the treatment of atopic dermatitis: a pilot study. Allergy Asthma Proc. 29, 530–537 (2008).

    CAS  Google Scholar 

  109. Kaplan, A.P., Joseph, K., Maykut, R.J., Geba, G.P. & Zeldin, R.K. Treatment of chronic autoimmune urticaria with omalizumab. J. Allergy Clin. Immunol. 122, 569–573 (2008).

    CAS  Google Scholar 

  110. Boyce, J.A. Successful treatment of cold-induced urticaria/anaphylaxis with anti-IgE. J. Allergy Clin. Immunol. 117, 1415–1418 (2006).

    CAS  Google Scholar 

  111. Maurer, M. et al. Efficacy and safety of omalizumab in patients with chronic urticaria who exhibit IgE against thyroperoxidase. J. Allergy Clin. Immunol. 128, 202–209 (2011).

    CAS  Google Scholar 

  112. Prussin, C. et al. Omalizumab treatment downregulates dendritic cell FcɛRI expression. J. Allergy Clin. Immunol. 112, 1147–1154 (2003).

    CAS  Google Scholar 

  113. Chang, T.W. & Shiung, Y.Y. Anti-IgE as a mast cell–stabilizing therapeutic agent. J. Allergy Clin. Immunol. 117, 1203–1212, quiz 1213 (2006).

    CAS  Google Scholar 

  114. MacGlashan, D. Jr. Therapeutic efficacy of omalizumab. J. Allergy Clin. Immunol. 123, 114–115 (2009).

    CAS  Google Scholar 

  115. Wang, C.Y. et al. Synthetic IgE peptide vaccine for immunotherapy of allergy. Vaccine 21, 1580–1590 (2003).

    CAS  Google Scholar 

  116. Peng, Z. et al. Novel IgE peptide-based vaccine prevents the increase of IgE and down-regulates elevated IgE in rodents. Clin. Exp. Allergy 37, 1040–1048 (2007).

    CAS  Google Scholar 

  117. McDonnell, J.M. et al. Structure based design and characterization of peptides that inhibit IgE binding to its high-affinity receptor. Nat. Struct. Biol. 3, 419–426 (1996).

    CAS  Google Scholar 

  118. McDonnell, J.M. et al. Structure-based design of peptides that inhibit IgE binding to its high-affinity receptor FcɛRI. Biochem. Soc. Trans. 25, 387–392 (1997).

    CAS  Google Scholar 

  119. Sandomenico, A. et al. IgE-binding properties and selectivity of peptide mimics of the FcvarɛRI binding site. Mol. Immunol. 46, 3300–3309 (2009).

    CAS  Google Scholar 

  120. Sandomenico, A., Monti, S.M., Palumbo, R. & Ruvo, M. A new FcɛRI receptor-mimetic peptide (PepE) that blocks IgE binding to its high affinity receptor and prevents mediator release from RBL 2H3 cells. J. Pept. Sci. 17, 604–609 (2011).

    CAS  Google Scholar 

  121. Rossi, M. et al. Anti-allergic properties of a new all-D synthetic immunoglobulin-binding peptide. Mol. Immunol. 45, 226–234 (2008).

    CAS  Google Scholar 

  122. Nakamura, G.R., Starovasnik, M.A., Reynolds, M.E. & Lowman, H.B. A novel family of hairpin peptides that inhibit IgE activity by binding to the high-affinity IgE receptor. Biochemistry 40, 9828–9835 (2001).

    CAS  Google Scholar 

  123. Nakamura, G.R., Reynolds, M.E., Chen, Y.M., Starovasnik, M.A. & Lowman, H.B. Stable “ζ” peptides that act as potent antagonists of the high-affinity IgE receptor. Proc. Natl. Acad. Sci. USA 99, 1303–1308 (2002).

    CAS  Google Scholar 

  124. Stamos, J. et al. Convergent recognition of the IgE binding site on the high-affinity IgE receptor. Structure 12, 1289–1301 (2004).

    CAS  Google Scholar 

  125. Buku, A., Mendlowitz, M., Condie, B.A. & Price, J.A. Histamine-releasing activity and binding to the FcɛRI alpha human mast cell receptor subunit of mast cell degranulating peptide analogues with alanine substitutions. J. Med. Chem. 46, 3008–3012 (2003).

    CAS  Google Scholar 

  126. Buku, A., Keselman, I., Lupyan, D., Mezei, M. & Price, J.A. Effective mast cell degranulating peptide inhibitors of the IgE/FcɛRI receptor interaction. Chem. Biol. Drug Des. 72, 133–139 (2008).

    CAS  Google Scholar 

  127. Zhu, D., Kepley, C.L., Zhang, M., Zhang, K. & Saxon, A. A novel human immunoglobulin Fcγ-Fcɛ bifunctional fusion protein inhibits FcɛRI-mediated degranulation. Nat. Med. 8, 518–521 (2002).

    CAS  Google Scholar 

  128. Akin, C. et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp. Hematol. 31, 686–692 (2003).

    CAS  Google Scholar 

  129. Gotlib, J. et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 106, 2865–2870 (2005).

    CAS  Google Scholar 

  130. Juurikivi, A. et al. Inhibition of c-kit tyrosine kinase by imatinib mesylate induces apoptosis in mast cells in rheumatoid synovia: a potential approach to the treatment of arthritis. Ann. Rheum. Dis. 64, 1126–1131 (2005).

    CAS  Google Scholar 

  131. Dubreuil, P. et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS ONE 4, e7258 (2009).

    Google Scholar 

  132. Matsubara, S. et al. Inhibition of spleen tyrosine kinase prevents mast cell activation and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 173, 56–63 (2006).

    CAS  Google Scholar 

  133. Rossi, A.B. et al. Identification of the Syk kinase inhibitor R112 by a human mast cell screen. J. Allergy Clin. Immunol. 118, 749–755 (2006).

    CAS  Google Scholar 

  134. Tebib, J. et al. Masitinib in the treatment of active rheumatoid arthritis: results of a multicentre, open-label, dose-ranging, phase 2a study. Arthritis Res. Ther. 11, R95 (2009).

    Google Scholar 

  135. Szefler, S.J. & Dakhama, A. New insights into asthma pathogenesis and treatment. Curr. Opin. Immunol. 23, 801–807 (2011).

    CAS  Google Scholar 

  136. Gonem, S., Desai, D., Siddiqui, S. & Brightling, C.C. Evidence for phenotype-driven treatment in asthmatic patients. Curr. Opin. Allergy Clin. Immunol. 11, 381–385 (2011).

    Google Scholar 

  137. Szefler, S.J. Advances in pediatric asthma in 2011: moving forward. J. Allergy Clin. Immunol. 129, 60–68 (2012).

    Google Scholar 

  138. Joseph, M. et al. Expression and functions of the high-affinity IgE receptor on human platelets and megakaryocyte precursors. Eur. J. Immunol. 27, 2212–2218 (1997).

    CAS  Google Scholar 

  139. Hasegawa, S. et al. Functional expression of the high affinity receptor for IgE (FcɛRI) in human platelets and it's intracellular expression in human megakaryocytes. Blood 93, 2543–2551 (1999).

    CAS  Google Scholar 

  140. Gounni, A.S. et al. Human airway smooth muscle cells express the high affinity receptor for IgE (FcɛRI): a critical role of Fc ɛ RI in human airway smooth muscle cell function. J. Immunol. 175, 2613–2621 (2005).

    CAS  Google Scholar 

  141. Ganguly, S. et al. Neural adrenergic/cyclic AMP regulation of the immunoglobulin E receptor α-subunit expression in the mammalian pinealocyte: a neuroendocrine/immune response link? J. Biol. Chem. 282, 32758–32764 (2007).

    CAS  Google Scholar 

  142. Dahlin, J.S., Ivarsson, M.A., Heyman, B. & Hallgren, J. IgE immune complexes stimulate an increase in lung mast cell progenitors in a mouse model of allergic airway inflammation. PLoS ONE 6, e20261 (2011).

    CAS  Google Scholar 

  143. Maeda, K. et al. Murine follicular dendritic cells and low affinity Fc receptors for IgE (FcɛRII). J. Immunol. 148, 2340–2347 (1992).

    CAS  Google Scholar 

  144. Yu, L.C. et al. Intestinal epithelial CD23 mediates enhanced antigen transport in allergy: evidence for novel splice forms. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G223–G234 (2003).

    CAS  Google Scholar 

  145. Li, H. et al. Transcytosis of IgE-antigen complexes by CD23a in human intestinal epithelial cells and its role in food allergy. Gastroenterology 131, 47–58 (2006).

    CAS  Google Scholar 

  146. Vouldoukis, I. et al. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the FcɛRII/CD23 surface antigen. Proc. Natl. Acad. Sci. USA 92, 7804–7808 (1995).

    CAS  Google Scholar 

  147. Takizawa, F., Adamczewski, M. & Kinet, J.P. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as FcγRII and FcγRIII. J. Exp. Med. 176, 469–475 (1992).

    CAS  Google Scholar 

  148. Hirano, M. et al. IgEb immune complexes activate macrophages through FcγRIV binding. Nat. Immunol. 8, 762–771 (2007).

    CAS  Google Scholar 

  149. Mancardi, D.A. et al. FcγRIV is a mouse IgE receptor that resembles macrophage FcɛRI in humans and promotes IgE-induced lung inflammation. J. Clin. Invest. 118, 3738–3750 (2008).

    CAS  Google Scholar 

  150. Craig, S.S. et al. Immunoelectron microscopic localization of galectin-3, an IgE binding protein, in human mast cells and basophils. Anat. Rec. 242, 211–219 (1995).

    CAS  Google Scholar 

  151. Chen, H.Y. et al. Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J. Immunol. 177, 4991–4997 (2006).

    CAS  Google Scholar 

  152. Truong, M.J. et al. Human neutrophils express immunoglobulin E (IgE)-binding proteins (Mac-2/ɛ BP) of the S-type lectin family: role in IgE-dependent activation. J. Exp. Med. 177, 243–248 (1993).

    CAS  Google Scholar 

  153. Ho, M.K. & Springer, T.A. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J. Immunol. 128, 1221–1228 (1982).

    CAS  Google Scholar 

  154. Sato, S. & Hughes, R.C. Control of Mac-2 surface expression on murine macrophage cell lines. Eur. J. Immunol. 24, 216–221 (1994).

    CAS  Google Scholar 

  155. Liu, F.T. et al. Expression and function of galectin-3, a β-galactoside-binding lectin, in human monocytes and macrophages. Am. J. Pathol. 147, 1016–1028 (1995).

    CAS  Google Scholar 

  156. Novak, R., Dabelic, S. & Dumic, J. Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages. Biochim. Biophys. Acta. published online, doi:10.1016/j.bbagen.2011.11.014 (14 December 2011).

  157. Truong, M.J. et al. IgE-binding molecules (Mac-2/ɛ BP) expressed by human eosinophils. Implication in IgE-dependent eosinophil cytotoxicity. Eur. J. Immunol. 23, 3230–3235 (1993).

    CAS  Google Scholar 

  158. Haines, K.A., Flotte, T.J., Springer, T.A., Gigli, I. & Thorbecke, G.J. Staining of Langerhans cells with monoclonal antibodies to macrophages and lymphoid cells. Proc. Natl. Acad. Sci. USA 80, 3448–3451 (1983).

    CAS  Google Scholar 

  159. Smetana, K. et al. Coexpression of binding sites for A(B) histo-blood group trisaccharides with galectin-3 and Lag antigen in human Langerhans cells. J. Leukoc. Biol. 66, 644–649 (1999).

    CAS  Google Scholar 

  160. Hsu, D.K., Chen, H.Y. & Liu, F.T. Galectin-3 regulates T-cell functions. Immunol. Rev. 230, 114–127 (2009).

    CAS  Google Scholar 

  161. Acosta-Rodríguez, E.V. et al. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J. Immunol. 172, 493–502 (2004).

    Google Scholar 

  162. Vray, B. et al. Up-regulation of galectin-3 and its ligands by Trypanosoma cruzi infection with modulation of adhesion and migration of murine dendritic cells. Glycobiology 14, 647–657 (2004).

    CAS  Google Scholar 

  163. Kay, A.B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 344, 30–37 (2001).

    CAS  Google Scholar 

  164. Wershil, B.K., Wang, Z.S., Gordon, J.R. & Galli, S.J. Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-α. J. Clin. Invest. 87, 446–453 (1991).

    CAS  Google Scholar 

  165. Nagai, H. et al. Role of mast cells in the onset of IgE-mediated late-phase cutaneous response in mice. J. Allergy Clin. Immunol. 106, S91–S98 (2000).

    CAS  Google Scholar 

  166. Haselden, B.M., Kay, A.B. & Larche, M. Immunoglobulin E–independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J. Exp. Med. 189, 1885–1894 (1999).

    CAS  Google Scholar 

  167. Holgate, S.T. The sentinel role of the airway epithelium in asthma pathogenesis. Immunol. Rev. 242, 205–219 (2011).

    CAS  Google Scholar 

  168. Humbert, M. et al. The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma: more similarities than differences. Immunol. Today 20, 528–533 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Galli lab and our collaborators and colleagues for their contributions to some of the work reviewed herein, apologize to the many contributors to this field whose work was not cited because of space limitations and acknowledge the support of US Public Health Service grants AI23990, AI070813 and CA72074 (to S.J.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J Galli.

Ethics declarations

Competing interests

S.J.G. occasionally consults for companies that sell and/or are developing agents to treat allergic disorders, including Amgen Inc., FivePrime Therapeutics, Genentech and Novartis, and is a member of the Scientific Advisory Board of Tunitas Therapeutics, which is developing protein therapeutics for the treatment of allergic disorders.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galli, S., Tsai, M. IgE and mast cells in allergic disease. Nat Med 18, 693–704 (2012). https://doi.org/10.1038/nm.2755

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2755

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing