Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reciprocal repression between P53 and TCTP

Abstract

Screening for genes that reprogram cancer cells for the tumor reversion switch identified TCTP (encoding translationally controlled tumor protein) as a crucial regulator of apoptosis. Here we report a negative feedback loop between P53 and TCTP. TCTP promotes P53 degradation by competing with NUMB for binding to P53-MDM2–containing complexes. TCTP inhibits MDM2 auto-ubiquitination and promotes MDM2-mediated ubiquitination and degradation of P53. Notably, Tctp haploinsufficient mice are sensitized to P53-dependent apoptosis. In addition, P53 directly represses TCTP transcription. In 508 breast cancers, high-TCTP status associates with poorly differentiated, aggressive G3-grade tumors, predicting poor prognosis (P < 0.0005). Tctp knockdown in primary mammary tumor cells from ErbB2 transgenic mice results in increased P53 expression and a decreased number of stem-like cancer cells. The pharmacological compounds sertraline and thioridazine increase the amount of P53 by neutralizing TCTP's action on the MDM2-P53 axis. This study links TCTP and P53 in a previously unidentified regulatory circuitry that may underlie the relevance of TCTP in cancer.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Transcriptional repression of TCTP by P53.
Figure 2: Repression of the P53 protein by TCTP.
Figure 3: TCTP forms a complex with P53, MDM2 and NUMB and inhibits the auto-ubiquitination of MDM2.
Figure 4: Tctp haploinsufficiency increases the amount of P53 and enhances susceptibility to P53-dependent apoptosis.
Figure 5: Clinical relevance of TCTP in breast cancer and its expression in mammary stem cells.
Figure 6: Sertraline and thioridazine increase the amount of P53.

References

  1. Vogelstein, B. & Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    CAS  Article  Google Scholar 

  2. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Article  Google Scholar 

  3. Telerman, A. et al. A model for tumor suppression using H-1 parvovirus. Proc. Natl. Acad. Sci. USA 90, 8702–8706 (1993).

    CAS  Article  Google Scholar 

  4. Weaver, V.M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    CAS  Article  Google Scholar 

  5. Hendrix, M.J. et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer 7, 246–255 (2007).

    CAS  Article  Google Scholar 

  6. Telerman, A. & Amson, R. The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat. Rev. Cancer 9, 206–216 (2009).

    CAS  Article  Google Scholar 

  7. Amson, R.B. et al. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the Drosophila seven in absentia gene. Proc. Natl. Acad. Sci. USA 93, 3953–3957 (1996).

    CAS  Article  Google Scholar 

  8. Linares-Cruz, G. et al. p21WAF-1 reorganizes the nucleus in tumor suppression. Proc. Natl. Acad. Sci. USA 95, 1131–1135 (1998).

    CAS  Article  Google Scholar 

  9. Nemani, M. et al. Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc. Natl. Acad. Sci. USA 93, 9039–9042 (1996).

    CAS  Article  Google Scholar 

  10. Roperch, J.P. et al. Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat. Med. 4, 835–838 (1998).

    CAS  Article  Google Scholar 

  11. Tuynder, M. et al. Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl. Acad. Sci. USA 99, 14976–14981 (2002).

    CAS  Article  Google Scholar 

  12. Tuynder, M. et al. Translationally controlled tumor protein is a target of tumor reversion. Proc. Natl. Acad. Sci. USA 101, 15364–15369 (2004).

    CAS  Article  Google Scholar 

  13. Li, F., Zhang, D. & Fujise, K. Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276, 47542–47549 (2001).

    CAS  Article  Google Scholar 

  14. Chen, S.H. et al. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell 18, 2525–2532 (2007).

    CAS  Article  Google Scholar 

  15. Susini, L. et al. TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ. 15, 1211–1220 (2008).

    CAS  Article  Google Scholar 

  16. Liu, H., Peng, H.W., Cheng, Y.S., Yuan, H.S. & Yang-Yen, H.F. Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol. Cell. Biol. 25, 3117–3126 (2005).

    CAS  Article  Google Scholar 

  17. Hsu, Y.C., Chern, J.J., Cai, Y., Liu, M. & Choi, K.W. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445, 785–788 (2007).

    CAS  Article  Google Scholar 

  18. Bazile, F. et al. Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30, 555–565 (2009).

    CAS  Article  Google Scholar 

  19. Brioudes, F., Thierry, A.M., Chambrier, P., Mollereau, B. & Bendahmane, M. Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc. Natl. Acad. Sci. USA 107, 16384–16389 (2010).

    CAS  Article  Google Scholar 

  20. Amson, R., Kubiak, J.Z., Van Montagu, M. & Telerman, A. Could TCTP contribute to Armin Braun's paradigm of tumor reversion in plants? Cell Cycle 10, 1 (2011).

    CAS  Article  Google Scholar 

  21. Koziol, M.J., Garrett, N. & Gurdon, J.B. Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr. Biol. 17, 801–807 (2007).

    CAS  Article  Google Scholar 

  22. MacDonald, S.M., Rafnar, T., Langdon, J. & Lichtenstein, L.M. Molecular identification of an IgE-dependent histamine-releasing factor. Science 269, 688–690 (1995).

    CAS  Article  Google Scholar 

  23. Sanchez, J.C. et al. Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18, 150–155 (1997).

    CAS  Article  Google Scholar 

  24. Bommer, U.A. & Thiele, B.J. The translationally controlled tumour protein (TCTP). Int. J. Biochem. Cell Biol. 36, 379–385 (2004).

    CAS  Article  Google Scholar 

  25. Bommer, U.A. et al. Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses. Oncogene 29, 763–773 (2010).

    CAS  Article  Google Scholar 

  26. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    CAS  Article  Google Scholar 

  27. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    CAS  Article  Google Scholar 

  28. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    CAS  Article  Google Scholar 

  29. Hoffman, W.H., Biade, S., Zilfou, J.T., Chen, J. & Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247–3257 (2002).

    CAS  Article  Google Scholar 

  30. Johnson, R.A., Ince, T.A. & Scotto, K.W. Transcriptional repression by p53 through direct binding to a novel DNA element. J. Biol. Chem. 276, 27716–27720 (2001).

    CAS  Article  Google Scholar 

  31. Godar, S. et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 134, 62–73 (2008).

    CAS  Article  Google Scholar 

  32. Lin, T. et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7, 165–171 (2005).

    CAS  Article  Google Scholar 

  33. Rho, S.B. et al. Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett. 585, 29–35 (2011).

    CAS  Article  Google Scholar 

  34. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    CAS  Article  Google Scholar 

  35. Kubbutat, M.H., Jones, S.N. & Vousden, K.H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    CAS  Article  Google Scholar 

  36. Juven-Gershon, T. et al. The Mdm2 oncoprotein interacts with the cell fate regulator Numb. Mol. Cell. Biol. 18, 3974–3982 (1998).

    CAS  Article  Google Scholar 

  37. Colaluca, I.N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    CAS  Article  Google Scholar 

  38. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    CAS  Article  Google Scholar 

  39. Lees-Miller, S.P., Sakaguchi, K., Ullrich, S.J., Appella, E. & Anderson, C.W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12, 5041–5049 (1992).

    CAS  Article  Google Scholar 

  40. Fiscella, M. et al. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8, 1519–1528 (1993).

    CAS  PubMed  Google Scholar 

  41. Tibbetts, R.S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    CAS  Article  Google Scholar 

  42. Selvakumaran, M. et al. Immediate early up-regulation of bax expression by p53 but not TGF-β1: a paradigm for distinct apoptotic pathways. Oncogene 9, 1791–1798 (1994).

    CAS  PubMed  Google Scholar 

  43. Nakano, K. & Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    CAS  Article  Google Scholar 

  44. Wu, W.S. et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123, 641–653 (2005).

    CAS  Article  Google Scholar 

  45. Deng, S.S. et al. Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genomics Proteomics Bioinformatics 4, 165–172 (2006).

    CAS  Article  Google Scholar 

  46. Pardal, R., Clarke, M.F. & Morrison, S.J. Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer 3, 895–902 (2003).

    CAS  Article  Google Scholar 

  47. Pece, S. et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62–73 (2010).

    CAS  Article  Google Scholar 

  48. Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    CAS  Article  Google Scholar 

  49. Menendez, D., Inga, A. & Resnick, M.A. The expanding universe of p53 targets. Nat. Rev. Cancer 9, 724–737 (2009).

    CAS  Article  Google Scholar 

  50. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    CAS  Article  Google Scholar 

  51. Bommer, U.A. et al. The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8, 478–496 (2002).

    CAS  Article  Google Scholar 

  52. Qu, L. et al. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3β. Genes Dev. 18, 261–277 (2004).

    CAS  Article  Google Scholar 

  53. Baltzis, D. et al. The eIF2α kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53. J. Biol. Chem. 282, 31675–31687 (2007).

    CAS  Article  Google Scholar 

  54. Yoon, C.H., Lee, E.S., Lim, D.S. & Bae, Y.S. PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. Proc. Natl. Acad. Sci. USA 106, 7852–7857 (2009).

    CAS  Article  Google Scholar 

  55. Passer, B.J. et al. The p53-inducible TSAP6 gene product regulates apoptosis and the cell cycle and interacts with Nix and the Myt1 kinase. Proc. Natl. Acad. Sci. USA 100, 2284–2289 (2003).

    CAS  Article  Google Scholar 

  56. Amzallag, N. et al. TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J. Biol. Chem. 279, 46104–46112 (2004).

    CAS  Article  Google Scholar 

  57. Yu, X., Harris, S.L. & Levine, A.J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006).

    CAS  Article  Google Scholar 

  58. Lespagnol, A. et al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15, 1723–1733 (2008).

    CAS  Article  Google Scholar 

  59. Susini, L. et al. Siah-1 binds and regulates the function of Numb. Proc. Natl. Acad. Sci. USA 98, 15067–15072 (2001).

    CAS  Article  Google Scholar 

  60. Fiucci, G. et al. Siah-1b is a direct transcriptional target of p53: identification of the functional p53 responsive element in the siah-1b promoter. Proc. Natl. Acad. Sci. USA 101, 3510–3515 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

A.T. and R.A. dedicate this work to G. Schnek for his sustained care. We thank C. Auclair for constant support; D. Galvagno for technical assistance; G. D'Ario and S. Confalonieri for statistical analyses; and B. Vogelstein (Johns Hopkins University), M. Oren (Weizmann Institute of Science) and B. Wasilyk and C. Wasilyk (IGBMC Illkirch) for HCT116, H1299 Trp53-null, temperature-sensitive P53 Val138 mutant cells, and P53 protein and plasmids, respectively. This work was supported by grants from the Agence Nationale de la Recherche Programme Blanc (ANR- 09-BLAN-0292-01), the European Union Network of Excellence CONTICANET and the Association Sclérose Tubéreuse de Bourneville to A.T. and R.A., the Associazione Italiana per la Ricerca sul Cancro and the Italian Ministries of Education University Research (MIUR) and the Italian Ministry of Health to S.P. and P.P.D.F., the European Community (FP6 and FP7), the European Research Council, the Ferrari Foundation, the Monzino Foundation and the Cassa Risparmio Provincie Lombarde (CARIPLO) Foundation to P.P.D.F. and the G. Vollaro Foundation to S.P. J.W. received support from Agency for Innovation by Science and Technology (IWT).

Author information

Authors and Affiliations

Authors

Contributions

A.T. and R.A. conceptualized, designed and directed the study and wrote the article as part of a teamwork with P.P.D.F., S.P. and J.-C.M. The P53-RE was characterized by A.L. The initial observation of increased P53 in Tctp heterozygous mice was made by A.L. The IHC analysis on the affected subjects was performed by G.M. and G.V. D.T. and I.C. performed the studies on the stem cells. R.V., A.L., D.T., I.C., S.R.-F., J.W. and O.C. carried out experiments and analyzed data. J.H. suggested and interpreted the surface plasmon resonance experiments.

Corresponding author

Correspondence to Adam Telerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 2716 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amson, R., Pece, S., Lespagnol, A. et al. Reciprocal repression between P53 and TCTP. Nat Med 18, 91–99 (2012). https://doi.org/10.1038/nm.2546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2546

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing