Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice

Abstract

Staphylococcus aureus is a major cause of human disease, responsible for half a million infections and approximately 20,000 deaths per year in the United States alone1,2. This pathogen secretes α-hemolysin, a pore-forming cytotoxin that contributes to the pathogenesis of pneumonia3,4,5. α-hemolysin injures epithelial cells in vitro by interacting with its receptor, the zinc-dependent metalloprotease ADAM10 (ref. 6). We show here that mice harboring a conditional disruption of the Adam10 gene in lung epithelium are resistant to lethal pneumonia. Investigation of the molecular mechanism of toxin-receptor function revealed that α-hemolysin upregulates ADAM10 metalloprotease activity in alveolar epithelial cells, resulting in cleavage of the adherens junction protein E-cadherin. Cleavage is associated with disruption of epithelial barrier function, contributing to the pathogenesis of lethal acute lung injury. A metalloprotease inhibitor of ADAM10 prevents E-cadherin cleavage in response to Hla; similarly, toxin-dependent E-cadherin proteolysis and barrier disruption is attenuated in ADAM10-knockout mice. Together, these data attest to the function of ADAM10 as the cellular receptor for α-hemolysin. The observation that α-hemolysin can usurp the metalloprotease activity of its receptor reveals a previously unknown mechanism of pore-forming cytotoxin action in which pathologic insults are not solely the result of irreversible membrane injury and defines ADAM10 inhibition as a strategy to attenuate α-hemolysin-induced disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ADAM10 contributes to lethal S. aureus pneumonia.
Figure 2: Hla induces ADAM10-dependent epithelial barrier disruption and E-cadherin cleavage.
Figure 3: Hla is required for E-cadherin cleavage and disruption of epithelial barrier function in S. aureus pneumonia.
Figure 4: An ADAM10-specific metalloprotease inhibitor prevents Hla-mediated injury.

Similar content being viewed by others

References

  1. Klevens, R.M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. J. Am. Med. Assoc. 298, 1763–1771 (2007).

    Article  CAS  Google Scholar 

  2. Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162 (2010).

    Article  CAS  Google Scholar 

  3. Bubeck Wardenburg, J., Patel, R.J. & Schneewind, O. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75, 1040–1044 (2007).

    Article  Google Scholar 

  4. Bubeck Wardenburg, J., Bae, T., Otto, M., Deleo, F.R. & Schneewind, O. Poring over pores: α-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat. Med. 13, 1405–1406 (2007).

    Article  Google Scholar 

  5. Bubeck Wardenburg, J. & Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 205, 287–294 (2008).

    Article  Google Scholar 

  6. Wilke, G.A. & Bubeck Wardenburg, J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin–mediated cellular injury. Proc. Natl. Acad. Sci. USA 107, 13473–13478 (2010).

    Article  CAS  Google Scholar 

  7. Gonzalez, M.R., Bischofberger, M., Pernot, L., van der Goot, F.G. & Freche, B. Bacterial pore-forming toxins: the (w)hole story? Cell. Mol. Life Sci. 65, 493–507 (2008).

    Article  CAS  Google Scholar 

  8. Tomita, T. & Kamio, Y. Molecular biology of the pore-forming cytolysins from Staphylococcus aureus, α- and γa-hemolysins and leukocidin. Biosci. Biotechnol. Biochem. 61, 565–572 (1997).

    Article  CAS  Google Scholar 

  9. O'Callaghan, R.J. et al. Specific roles of α-toxin and β-toxin during Staphylococcus aureus corneal infection. Infect. Immun. 65, 1571–1578 (1997).

    CAS  Google Scholar 

  10. Kennedy, A.D. et al. Targeting of α-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J. Infect. Dis. 202, 1050–1058 (2010).

    Article  Google Scholar 

  11. Brosnahan, A.J., Mantz, M.J., Squier, C.A., Peterson, M.L. & Schlievert, P.M. Cytolysins augment superantigen penetration of stratified mucosa. J. Immunol. 182, 2364–2373 (2009).

    Article  CAS  Google Scholar 

  12. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    Article  CAS  Google Scholar 

  13. Hartmann, D. et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615–2624 (2002).

    Article  CAS  Google Scholar 

  14. Perl, A.K., Wert, S.E., Nagy, A., Lobe, C.G. & Whitsett, J.A. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc. Natl. Acad. Sci. USA 99, 10482–10487 (2002).

    Article  CAS  Google Scholar 

  15. Tian, L. et al. ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int. Immunol. 20, 1181–1187 (2008).

    Article  CAS  Google Scholar 

  16. Ragle, B.E. & Bubeck Wardenburg, J. Anti–α-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect. Immun. 77, 2712–2718 (2009).

    Article  CAS  Google Scholar 

  17. Reiss, K. & Saftig, P. The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin. Cell Dev. Biol. 20, 126–137 (2009).

    Article  CAS  Google Scholar 

  18. Seals, D.F. & Courtneidge, S.A. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17, 7–30 (2003).

    Article  CAS  Google Scholar 

  19. Menzies, B.E. & Kernodle, D.S. Site-directed mutagenesis of the α-toxin gene of Staphylococcus aureus: role of histidines in toxin activity in vitro and in a murine model. Infect. Immun. 62, 1843–1847 (1994).

    CAS  Google Scholar 

  20. Kim, M. et al. Bacterial interactions with the host epithelium. Cell Host Microbe 8, 20–35 (2010).

    Article  CAS  Google Scholar 

  21. Maretzky, T. et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc. Natl. Acad. Sci. USA 102, 9182–9187 (2005).

    Article  CAS  Google Scholar 

  22. Murphy, G. Regulation of the proteolytic disintegrin metalloproteinases, the 'Sheddases'. Semin. Cell Dev. Biol. 20, 138–145 (2009).

    Article  CAS  Google Scholar 

  23. Rubins, J.B. et al. Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia. J. Clin. Invest. 95, 142–150 (1995).

    Article  CAS  Google Scholar 

  24. Marriott, H.M. & Dockrell, D.H. Streptococcus pneumoniae: the role of apoptosis in host defense and pathogenesis. Int. J. Biochem. Cell Biol. 38, 1848–1854 (2006).

    Article  CAS  Google Scholar 

  25. Steinhusen, U. et al. Cleavage and shedding of E-cadherin after induction of apoptosis. J. Biol. Chem. 276, 4972–4980 (2001).

    Article  CAS  Google Scholar 

  26. Matthay, M.A. & Zemans, R.L. The Acute respiratory distress syndrome: pathogenesis and treatment. Annu. Rev. Pathol. 6, 147–163 (2011).

    Article  CAS  Google Scholar 

  27. Gómez, M.I., Seaghdha, M.O. & Prince, A.S. Staphylococcus aureus protein A activates TACE through EGFR-dependent signaling. EMBO J. 26, 701–709 (2007).

    Article  Google Scholar 

  28. Martin, F.J., Parker, D., Harfenist, B.S., Soong, G. & Prince, A. Participation of CD11c+ leukocytes in methicillin-resistant Staphylococcus aureus clearance from the lung. Infect. Immun. 79, 1898–1904 (2011).

    Article  CAS  Google Scholar 

  29. Ludwig, A. et al. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb. Chem. High Throughput Screen. 8, 161–171 (2005).

    Article  CAS  Google Scholar 

  30. Dijkstra, A. et al. Expression of ADAMs (“a disintegrin and metalloprotease”) in the human lung. Virchows Arch. 454, 441–449 (2009).

    Article  CAS  Google Scholar 

  31. Wilke, G.A. & Bubeck Wardenburg, J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin–mediated cellular injury. Proc. Natl. Acad. Sci. USA 107, 13473–13478 (2010).

    Article  CAS  Google Scholar 

  32. Bubeck Wardenburg, J. & Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 205, 287–294 (2008).

    Article  Google Scholar 

  33. Illek, B. et al. Cl transport in complemented CF bronchial epithelial cells correlates with CFTR mRNA expression levels. Cell. Physiol. Biochem. 22, 57–68 (2008).

    Article  CAS  Google Scholar 

  34. Hoettecke, N., Ludwig, A., Foro, S. & Schmidt, B. Improved synthesis of ADAM10 inhibitor GI254023X. Neurodegener. Dis. 7, 232–238 (2010).

    Article  CAS  Google Scholar 

  35. Bubeck Wardenburg, J., Patel, R.J. & Schneewind, O. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75, 1040–1044 (2007).

    Article  Google Scholar 

  36. Bubeck Wardenburg, J., Bae, T., Otto, M., Deleo, F.R. & Schneewind, O. Poring over pores: α-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat. Med. 13, 1405–1406 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Golovkina for assistance with mouse breeding strategies, A. Crofts for pilot studies of E-cadherin cleavage in vitro, D. Gruenert (University of California San Francisco) for 16HBE14o- cells, R. Tweten (The University of Oklahoma Health Sciences Center) for the provision of recombinant PLY, J. Whitsett (Cincinnati Children's Medical Center) for SP-C-rtTA-(tetO)7CMV-Cre mice, O. Schneewind for discussions and comments on the manuscript, C. Labno for microscopy support, T. Li for immunohistochemistry support, and the Integrated Microscopy and Immunohistochemistry Facilities at the University of Chicago. This work was supported by the Departments of Pediatrics and Microbiology at the University of Chicago. M.E.P. was partially supported by US National Institutes of Health grant T32 GM007183. The authors acknowledge membership in and support from the Region V 'Great Lakes' Regional Center for Excellence (US National Institutes of Health award 2-U54-AI-057153).

Author information

Authors and Affiliations

Authors

Contributions

I.I. performed mouse infection modeling, in vivo E-cadherin cleavage studies and ECIS studies. N.I. performed mouse breeding and genetic analysis and assisted with infection modeling. G.A.W. performed siRNA transfections, analyzed ADAM10 expression on 16HBE14o- cells and performed cellular assays of metalloprotease activity. M.E.P. examined the effects of GI254023X on toxin binding and performed ECIS experiments. K.M.F. generated the HlaPPL mutant. Y.W. performed ECIS experiments. J.B.W. performed cellular assays of metalloprotease activity, E-cadherin cleavage and immunofluorescence microscopy and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Juliane Bubeck Wardenburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 2009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoshima, I., Inoshima, N., Wilke, G. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17, 1310–1314 (2011). https://doi.org/10.1038/nm.2451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing