Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA released from dying host cells mediates aluminum adjuvant activity

Abstract

Aluminum-based adjuvants (aluminum salts or alum) are widely used in human vaccination, although their mechanisms of action are poorly understood. Here we report that, in mice, alum causes cell death and the subsequent release of host cell DNA, which acts as a potent endogenous immunostimulatory signal mediating alum adjuvant activity. Furthermore, we propose that host DNA signaling differentially regulates IgE and IgG1 production after alum-adjuvanted immunization. We suggest that, on the one hand, host DNA induces primary B cell responses, including IgG1 production, through interferon response factor 3 (Irf3)-independent mechanisms. On the other hand, we suggest that host DNA also stimulates 'canonical' T helper type 2 (TH2) responses, associated with IgE isotype switching and peripheral effector responses, through Irf3-dependent mechanisms. The finding that host DNA released from dying cells acts as a damage-associated molecular pattern that mediates alum adjuvant activity may increase our understanding of the mechanisms of action of current vaccines and help in the design of new adjuvants.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Alum induces cell death and release of host DNA at sites of injection.
Figure 2: Host DNA released by alum cytotoxicity mediates alum adjuvant activity on humoral and TH2 cell responses.
Figure 3: Alum and host genomic DNA trigger type I IFN secretion and IgE responses through activation of the Tbk1-Irf3 axis.
Figure 4: Irf3 is essential for the boosting of canonical TH2 cells by alum and genomic DNA.
Figure 5: Deficient migration of inflammatory monocytes impairs alum-induced TH2 and IgE responses in Irf3−/− mice.
Figure 6: Alum-induced iMono migration depends on IL-12p40 homodimer signaling.

References

  1. Glenny, A.T., Pope, C.G., Waddington, H. & Wallace, U. Immunological Notes: XVII–XXIV. J. Pathol. Bacteriol. 29, 31–40 (1926).

    CAS  Article  Google Scholar 

  2. Mannhalter, J.W., Neychev, H.O., Zlabinger, G.J., Ahmad, R. & Eibl, M.M. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin. Exp. Immunol. 61, 143–151 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, H., Nookala, S. & Re, F. Aluminum hydroxide adjuvants activate Caspase-1 and induce IL-1β and IL-18 release. J. Immunol. 178, 5271–5276 (2007).

    CAS  Article  PubMed  Google Scholar 

  4. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Franchi, L. & Nunez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1β; secretion but dispensable for adjuvant activity. Eur. J. Immunol. 38, 2085–2089 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Kool, M. et al. Cutting Edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).

    CAS  Article  PubMed  Google Scholar 

  8. Li, H., Willingham, S.B., Ting, J.P.Y. & Re, F. Cutting Edge: Inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J. Immunol. 181, 17–21 (2008).

    CAS  Article  PubMed  Google Scholar 

  9. Spreafico, R., Ricciardi-Castagnoli, P. & Mortellaro, A. The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. Eur. J. Immunol. 40, 638–642 (2010).

    CAS  Article  PubMed  Google Scholar 

  10. McKee, A.S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183, 4403–4414 (2009).

    CAS  Article  PubMed  Google Scholar 

  11. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Goto, N. et al. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine 15, 1364–1371 (1997).

    CAS  Article  PubMed  Google Scholar 

  13. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Chen, G.Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Ishii, K.J. et al. Genomic DNA released by dying cells induces the maturation of APCs. J. Immunol. 167, 2602–2607 (2001).

    CAS  Article  PubMed  Google Scholar 

  16. Takeshita, F. & Ishii, K.J. Intracellular DNA sensors in immunity. Curr. Opin. Immunol. 20, 383–388 (2008).

    CAS  Article  PubMed  Google Scholar 

  17. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  Article  PubMed  Google Scholar 

  18. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    CAS  Article  PubMed  Google Scholar 

  19. Imaeda, A.B. et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest. 119, 305–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    CAS  Article  PubMed  Google Scholar 

  21. Muruve, D.A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    CAS  Article  PubMed  Google Scholar 

  22. Chiu, Y.-H., MacMillan, J.B. & Chen, Z.J. RNA Polymerase III detects cytosolic DNA and induces type I Interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J. & Alnemri, E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009).

    CAS  Article  PubMed  Google Scholar 

  27. Yang, P. et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β-catenin–dependent pathway. Nat. Immunol. 11, 487–494 (2010).

    CAS  Article  PubMed  Google Scholar 

  28. Ishii, K.J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    CAS  Article  PubMed  Google Scholar 

  29. Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. EMBO J. 19, 4976–4985 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    CAS  Article  PubMed  Google Scholar 

  31. Marichal, T. et al. Interferon response factor 3 is essential for house dust mite-induced airway allergy. J. Allergy Clin. Immunol. 126, 836–844 (2010).

    CAS  Article  PubMed  Google Scholar 

  32. Reinhardt, R.L., Liang, H.-E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    CAS  Article  PubMed  Google Scholar 

  34. Shortman, K. & Naik, S.H. Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 7, 19–30 (2007).

    CAS  Article  PubMed  Google Scholar 

  35. Khader, S.A. et al. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J. Exp. Med. 203, 1805–1815 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Robinson, R.T. et al. Yersinia pestis evades TLR4-dependent induction of IL-12(p40)2 by dendritic cells and subsequent cell migration. J. Immunol. 181, 5560–5567 (2008).

    CAS  Article  PubMed  Google Scholar 

  37. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).

    CAS  Article  PubMed  Google Scholar 

  38. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    CAS  Article  PubMed  Google Scholar 

  39. Kawane, K. et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443, 998–1002 (2006).

    CAS  Article  PubMed  Google Scholar 

  40. Pulendran, B. & Ahmed, R. Translating Innate Immunity into Immunological Memory: Implications for Vaccine Development. Cell 124, 849–863 (2006).

    CAS  Article  PubMed  Google Scholar 

  41. Coffman, R.L., Sher, A. & Seder, R.A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Fazilleau, N., McHeyzer-Williams, L.J., Rosen, H. & McHeyzer-Williams, M.G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Fazilleau, N., Mark, L., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Follicular helper T cells: lineage and location. Immunity 30, 324–335 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Nakano, H. et al. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat. Immunol. 10, 394–402 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Mohr, E. et al. Dendritic cells and monocyte/macrophages that create the IL-6/APRIL-rich lymph node microenvironments where plasmablasts mature. J. Immunol. 182, 2113–2123 (2009).

    CAS  Article  PubMed  Google Scholar 

  46. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    CAS  Article  PubMed  Google Scholar 

  47. Hemmi, H. et al. The roles of two IκB kinase–related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    CAS  Article  PubMed  Google Scholar 

  49. Kimura, T. et al. Essential and non-redundant roles of p48 (ISGF3 gamma) and IRF-1 in both type I and type II interferon responses, as revealed by gene targeting studies. Genes Cells 1, 115–124 (1996).

    CAS  Article  PubMed  Google Scholar 

  50. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    CAS  Article  PubMed  Google Scholar 

  51. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  Article  PubMed  Google Scholar 

  52. Bedoret, D. et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 119, 3723–3738 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Nigg, A.P. et al. Dendritic cell-derived IL-12p40 homodimer contributes to susceptibility in cutaneous leishmaniasis in BALB/c mice. J. Immunol. 178, 7251–7258 (2007).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Taniguchi (University of Tokyo) and RIKEN BioResource Center for providing Irf3−/− and Irf9−/− mice, and V. Dixit (Genentech) for providing Nlrp3−/− and Casp1−/− mice. We also thank S. Ormenese and R. Stephaan of the Cell Imaging and Flow Cytometry Technological Platform of the Groupe Interdisciplinaire de Génoprotéomique Appliquée for help with fluorescent-activated cell sorting (FACS) analyses; M. Lebrun for help with confocal microscopy; P. Drion and G. Gaudray for animal management; F. Andris, S. Goriely and O. Leo for helpful discussions; and V. Conrath, L. Duwez, R. Fares, C. François, F. Olivier, J. Parisi, F. Perin and I. Sbai for excellent technical and secretarial assistance.

T.M., D.B., C.M. and C.S. are research fellows, and C.J.D. is a postdoctoral fellow of the Fonds National de la Recherche Scientifique (FRS-FNRS; Belgium). This work was supported by grants of the FRS-FNRS, the Belgian Fonds de la Recherche Scientifique Médicale and the Belgian Programme on Interuniversity Attraction Poles (IUAP; FEDIMMUNE, Belgian Science Policy). This work was also partly supported by the Knowledge Cluster Initiative (K.J.I.); a Grant-in-Aid for Scientific Research (K.J.I. and C.C.) of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); and by the Core Research Evolutionary Science and Technology (CREST) program at the Japan Science and Technology Agency (K.J.I.).

Author information

Authors and Affiliations

Authors

Contributions

T.M., K.J.I., F.B. and C.J.D. designed the experiments; C.C., K.J.I., F.B. and C.J.D. supervised the project; T.M. and D.B. made the initial observation; T.M. did most of the experiments and compiled the data; T.M., K.O. and K.K. did the experiments involving Tbk1/Tnf double-knockout mice, Zbp1−/−, Ifnar2−/− and Mavs−/− mice; C.M. and C.S. did the FACS analyses; S.A. provided the Tbk1/Tnf double-knockout mice and Zbp1−/− mice; P.L., S.A., K.J.I. and F.B. secured funding; K.J.I. and F.B. provided feedback on the manuscript; and C.J.D. wrote the manuscript.

Corresponding authors

Correspondence to Ken J Ishii or Christophe J Desmet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 and Supplementary Methods (PDF 3117 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marichal, T., Ohata, K., Bedoret, D. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17, 996–1002 (2011). https://doi.org/10.1038/nm.2403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2403

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing