Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner

An Author Correction to this article was published on 01 December 2023

This article has been updated

Abstract

Transcription factor FoxO1 promotes hepatic glucose production. Genetic inhibition of FoxO1 function prevents diabetes in experimental animal models, providing impetus to identify pharmacological approaches to modulate this function. Altered Notch signaling is evident in tumorigenesis, and Notch antagonists are in clinical testing for application in cancer. Here we report that FoxO1 and Notch coordinately regulate hepatic glucose metabolism. Combined haploinsufficiency of FoxO1 and Notch1 markedly raises insulin sensitivity in diet-induced insulin resistance, as does liver-specific knockout of the Notch transcriptional effector Rbp-Jκ. Conversely, Notch1 gain-of-function promotes insulin resistance in a FoxO1-dependent manner and induces glucose-6-phosphatase expression. Pharmacological blockade of Notch signaling with γ-secretase inhibitors raises insulin sensitivity after in vivo administration in lean mice and in obese, insulin-resistant mice. The data identify a heretofore unknown metabolic function of Notch and suggest that Notch inhibition is beneficial in diabetes treatment, in part by helping to offset excessive FoxO1-driven hepatic glucose production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic characterization of Foxo1+/− and Foxo1+/−; Notch1+/− mice.
Figure 2: Hyperinsulinemic-euglycemic clamps and gene expression studies in Foxo1+/−; Notch1+/− mice.
Figure 3: Metabolic characteristics of L-Rbpj mice.
Figure 4: Notch1 regulation of G6pc transcription in hepatocytes, and hepatic insulin sensitivity in vivo.
Figure 5: Effects of GSI in primary hepatocytes.
Figure 6: Insulin-sensitizing effects of dibenzazepine (GSI) treatment.

Similar content being viewed by others

Change history

References

  1. Accili, D. Lilly lecture 2003: the struggle for mastery in insulin action: from triumvirate to republic. Diabetes 53, 1633–1642 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Kahn, S.E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355, 2427–2443 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kim-Muller, J.Y. & Accili, D. Cell biology. Selective insulin sensitizers. Science 331, 1529–1531 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Haeusler, R.A., Kaestner, K.H. & Accili, D. FoxOs function synergistically to promote hepatic glucose production. J. Biol. Chem. 285, 35245–35248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakae, J. et al. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat. Genet. 32, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Nakae, J., Park, B.C. & Accili, D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982–15985 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Altomonte, J. et al. Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. Am. J. Physiol. Endocrinol. Metab. 285, E718–E728 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto, M., Pocai, A., Rossetti, L., Depinho, R.A. & Accili, D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6, 208–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Fortini, M.E. Notch signaling: the core pathway and its posttranslational regulation. Dev. Cell 16, 633–647 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Dufraine, J., Funahashi, Y. & Kitajewski, J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 27, 5132–5137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weinmaster, G. & Kopan, R. A garden of Notch-ly delights. Development 133, 3277–3282 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Zong, Y. et al. Notch signaling controls liver development by regulating biliary differentiation. Development 136, 1727–1739 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loomes, K.M. et al. Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology 45, 323–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Xue, Y. et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8, 723–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Oka, C. et al. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121, 3291–3301 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Kitamura, T. et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest. 117, 2477–2485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Postic, C. & Magnuson, M.A. DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 26, 149–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Das, I. et al. Notch oncoproteins depend on γ-secretase/presenilin activity for processing and function. J. Biol. Chem. 279, 30771–30780 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Nakae, J., Kitamura, T., Silver, D.L. & Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108, 1359–1367 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, J. et al. Effects of adenovirus-mediated liver-selective overexpression of protein tyrosine phosphatase-1b on insulin sensitivity in vivo. Diabetes Obes. Metab. 3, 367–380 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Rand, M.D. et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol. Cell. Biol. 20, 1825–1835 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolfe, M.S. γ-Secretase in biology and medicine. Semin. Cell Dev. Biol. 20, 219–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. van Es, J.H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Milano, J. et al. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. 82, 341–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Samuel, V.T. et al. Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 55, 2042–2050 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Accili, D. & Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, A. et al. Functional silencing of hepatic microsomal glucose-6-phosphatase gene expression in vivo by adenovirus-mediated delivery of short hairpin RNA. FEBS Lett. 558, 69–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Chopra, A.R. et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 322, 1395–1399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horton, J.D., Goldstein, J.L. & Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, J.J. et al. FoxO1 haploinsufficiency protects against high-fat diet-induced insulin resistance with enhanced peroxisome proliferator-activated receptor gamma activation in adipose tissue. Diabetes 58, 1275–1282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakae, J. et al. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 57, 563–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Nakae, J. et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Berg, A.H., Combs, T.P., Du, X., Brownlee, M. & Scherer, P.E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Pajvani, U.B. et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Woo, H.N., Park, J.S., Gwon, A.R., Arumugam, T.V. & Jo, D.G. Alzheimer's disease and Notch signaling. Biochem. Biophys. Res. Commun. 390, 1093–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Purow, B. Notch inhibitors as a new tool in the war on cancer: a pathway to watch. Curr. Pharm. Biotechnol. 10, 154–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moellering, R.E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fujikura, J. et al. Notch/Rbp-j signaling prevents premature endocrine and ductal cell differentiation in the pancreas. Cell Metab. 3, 59–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Paik, J.H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl. Acad. Sci. USA 101, 2975–2980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krebs, L.T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Plum, L. et al. The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat. Med. 15, 1195–1201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, H.V. et al. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC neurons. Diabetes 59, 337–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Collins, Q.F. et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J. Biol. Chem. 282, 30143–30149 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Schmoll, D. et al. Regulation of glucose-6-phosphatase gene expression by protein kinase Bα and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J. Biol. Chem. 275, 36324–36333 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kitamura, Y.I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants DK57539 (D.A.), DK084583 (U.B.P.), DK63608 (Columbia Diabetes and Endocrinology Research Center), HL062454 (J.K.) and DK76169 (Yale Mouse Metabolic Phenotyping Center). We thank D. Schmoll (Sanofi-Aventis) for the G6pc-luciferase constructs, members of the Accili, Kitajewski and Shulman laboratories for insightful discussion of the data, and A. Flete, T. Kolar and T. Lu for technical support.

Author information

Authors and Affiliations

Authors

Contributions

U.B.P. designed and performed experiments, analyzed data and wrote the manuscript. C.J.S., A.L.B. and V.T.S. performed experiments and analyzed data. G.I.S., J.K. and D.A. designed the studies, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Domenico Accili.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–5 (PDF 776 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajvani, U., Shawber, C., Samuel, V. et al. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat Med 17, 961–967 (2011). https://doi.org/10.1038/nm.2378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing