Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models

Abstract

Polycystic kidney disease (PKD) represents a family of genetic disorders characterized by renal cystic growth and progression to kidney failure1. No treatment is currently available for people with PKD, although possible therapeutic interventions are emerging2,3,4,5,6,7,8. Despite genetic and clinical heterogeneity, PKDs have in common defects of cystic epithelia, including increased proliferation, apoptosis and activation of growth regulatory pathways1. Sphingolipids and glycosphingolipids are emerging as major regulators of these cellular processes9. We sought to evaluate the therapeutic potential for glycosphingolipid modulation as a new approach to treat PKD. Here we demonstrate that kidney glucosylceramide (GlcCer) and ganglioside GM3 levels are higher in human and mouse PKD tissue as compared to normal tissue, regardless of the causative mutation. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor Genz-123346 effectively inhibits cystogenesis in mouse models orthologous to human autosomal dominant PKD (Pkd1 conditional knockout mice) and nephronophthisis (jck and pcy mice). Molecular analysis in vitro and in vivo indicates that Genz-123346 acts through inhibition of the two key pathways dysregulated in PKD: Akt protein kinase–mammalian target of rapamycin signaling and cell cycle machinery. Taken together, our data suggest that inhibition of GlcCer synthesis represents a new and effective treatment option for PKD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Altered glycosphingolipid metabolism in human and mouse PKD kidneys.
Figure 2: Blockade of GlcCer synthase activity with Genz-123346 lowers renal GlcCer abundance and effectively inhibits PKD in jck mice.
Figure 3: Molecular pathways of cystogenesis affected by inhibition of GlcCer synthase in vivo.
Figure 4: Genz-123346 effectively inhibits PKD in pcy mice and in Pkd1 conditional knockout mice.

References

  1. 1

    Torres, V.E. & Harris, P.C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149–168 (2009).

    Article  Google Scholar 

  2. 2

    Bukanov, N.O., Smith, L.A., Klinger, K.W., Ledbetter, S.R. & Ibraghimov-Beskrovnaya, O. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444, 949–952 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Tao, Y., Kim, J., Schrier, R.W. & Edelstein, C.L. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol. 16, 46–51 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Leuenroth, S.J., Bencivenga, N., Chahboune, H., Hyder, F. & Crews, C.M. Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD. Nephrol. Dial Transplant. published online, doi:10.1093/ndt/gfp777 (4 February 2010).

  5. 5

    Gattone, V.H. II, Wang, X., Harris, P.C. & Torres, V.E. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 9, 1323–1326 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Ruggenenti, P. et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 68, 206–216 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Wahl, P.R. et al. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial. Transplant. 21, 598–604 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Shillingford, J.M., Piontek, K.B., Germino, G.G. & Weimbs, T. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol. 21, 489–497 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Bieberich, E. Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj. J. 21, 315–327 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Gabow, P.A. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329, 332–342 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Igarashi, P. & Somlo, S. Genetics and pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 13, 2384–2398 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Hildebrandt, F., Attanasio, M. & Otto, E. Nephronophthisis: disease mechanisms of a ciliopathy. J. Am. Soc. Nephrol. 20, 23–35 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Quarmby, L.M. & Parker, J.D. Cilia and the cell cycle? J. Cell Biol. 169, 707–710 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Yamaguchi, T. et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem. 279, 40419–40430 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Wahl, P.R. et al. Mitotic activation of Akt signalling pathway in Han:SPRD rats with polycystic kidney disease. Nephrology (Carlton) 12, 357–363 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Masoumi, A., Reed-Gitomer, B., Kelleher, C. & Schrier, R.W. Potential pharmacological interventions in polycystic kidney disease. Drugs 67, 2495–2510 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Lahiri, S. & Futerman, A.H. The metabolism and function of sphingolipids and glycosphingolipids. Cell. Mol. Life Sci. 64, 2270–2284 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Chatterjee, S., Shi, W.Y., Wilson, P. & Mazumdar, A. Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease. J. Lipid Res. 37, 1334–1344 (1996).

    CAS  PubMed  Google Scholar 

  20. 20

    Rani, C.S. et al. Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases. J. Biol. Chem. 270, 2859–2867 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Hong, S., Huo, H., Xu, J. & Liao, K. Insulin-like growth factor-1 receptor signaling in 3T3–L1 adipocyte differentiation requires lipid rafts but not caveolae. Cell Death Differ. 11, 714–723 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Yamashita, T. et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. USA 100, 3445–3449 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Rebbaa, A., Hurh, J., Yamamoto, H., Kersey, D.S. & Bremer, E.G. Ganglioside GM3 inhibition of EGF receptor mediated signal transduction. Glycobiology 6, 399–406 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Tagami, S. et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 277, 3085–3092 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Deshmukh, G.D., Radin, N.S., Gattone, V.H. II & Shayman, J.A. Abnormalities of glycosphingolipid, sulfatide and ceramide in the polycystic (cpk/cpk) mouse. J. Lipid Res. 35, 1611–1618 (1994).

    CAS  PubMed  Google Scholar 

  27. 27

    Janich, P. & Corbeil, D. GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett. 581, 1783–1787 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Lee, L., Abe, A. & Shayman, J.A. Improved inhibitors of glucosylceramide synthase. J. Biol. Chem. 274, 14662–14669 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Abe, A. et al. Improved inhibitors of glucosylceramide synthase. J. Biochem. 111, 191–196 (1992).

    CAS  Article  Google Scholar 

  30. 30

    Zhao, H. et al. Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56, 1210–1218 (2007).

    CAS  Article  Google Scholar 

  31. 31

    McEachern, K.A. et al. A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease. Mol. Genet. Metab. 91, 259–267 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Lukina, E. et al. A phase 2 study of eliglustat tartrate (Genz-112638), an oral substrate reduction therapy for Gaucher disease type 1. Blood published online, doi:10.1182/blood-2010-03-273151 (3 May 2010).

  33. 33

    Smith, L.A. et al. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities and common features with human disease. J. Am. Soc. Nephrol. 17, 2821–2831 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Takahashi, H. et al. A hereditary model of slowly progressive polycystic kidney disease in the mouse. J. Am. Soc. Nephrol. 1, 980–989 (1991).

    CAS  PubMed  Google Scholar 

  35. 35

    Otto, E.A. et al. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J. Am. Soc. Nephrol. 19, 587–592 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Natoli, T.A. et al. Pkd1 and Nek8 mutations affect cell-cell adhesion and cilia in cysts formed in kidney organ cultures. Am. J. Physiol. Renal Physiol. 294, F73–F83 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Shayman, J.A. et al. Modulation of renal epithelial cell growth by glucosylceramide. Association with protein kinase C, sphingosine, and diacylglycerol. J. Biol. Chem. 266, 22968–22974 (1991).

    CAS  PubMed  Google Scholar 

  38. 38

    Seibler, J. et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12 (2003).

    Article  Google Scholar 

  39. 39

    Folch, J., Lees, M. & Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Jankowski, K. Microdetermination of phosphorus in organic materials from polymer industry by microwave-induced plasma atomic emission spectrometry after microwave digestion. Microchem. J. 70, 41–49 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank V. Gattone (Indiana University School of Medicine) for the kind gift of pcy breeding pairs and advice on colony maintenance. We thank S. Jones and the staff of Rodent Experimental Models (Worcester, Massachusetts) for production of the Pkd1 conditional knockout mice. We thank the staff of the Genzyme Departments of Comparative Medicine and Histology for help with in vivo studies and sample preparations. We thank S. Moreno for expert technical assistance. We are grateful to K. McEachern, R. Sacchiero, D. Copeland, S. Cheng, N. Yew, A. Smith, R. Gregory, T. Sybertz, K. Klinger and J. Burns for helpful discussions and comments on this manuscript.

Author information

Affiliations

Authors

Contributions

T.A.N. designed, conducted and analyzed the in vivo data. T.A.N., L.A.S. and K.A.R. performed the in vivo work. B.W., S.K., Y.B., A.B. and W.R.D. performed the glycosphingolipid analyses. K.A.R., W.R.D., N.O.B. and H.H. performed image processing and histological quantification. H.H. and R.J.R. performed and analyzed the in vitro work. J.A.S., S.R.L. and J.P.L. provided scientific advice, data analysis and edited the manuscript. T.A.N. and O.I.-B. wrote the manuscript, with contributions from K.A.R., N.O.B. and H.H. O.I.-B. designed experiments, analyzed results and supervised the project.

Corresponding author

Correspondence to Oxana Ibraghimov-Beskrovnaya.

Ethics declarations

Competing interests

T.A.N., L.A.S., K.A.R., B.W., S.K., Y.B., A.B., N.O.B., W.R.D., H.H., R.J.R., S.R.L., J.P.L. and O. I.-B. are all employed by Genzyme. J.A.S. holds intellectual property rights for Genzyme.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–3 and Supplementary Methods (PDF 2258 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Natoli, T., Smith, L., Rogers, K. et al. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 16, 788–792 (2010). https://doi.org/10.1038/nm.2171

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing