Role of NMDA receptor–dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries

Abstract

Excitotoxic neuronal damage caused by overactivation of N-methyl-D-aspartate glutamate receptors (NMDARs) is thought to be a principal cause of neuronal loss after stroke and brain trauma. Here we report that activation of sterol regulatory element binding protein-1 (SREBP-1) transcription factor in affected neurons is an essential step in NMDAR-mediated excitotoxic neuronal death in both in vitro and in vivo models of stroke. The NMDAR-mediated activation of SREBP-1 is a result of increased insulin-induced gene-1 (Insig-1) degradation, which can be inhibited with an Insig-1–derived interference peptide (Indip) that we have developed. Using a focal ischemia model of stroke, we show that systemic administration of Indip not only prevents SREBP-1 activation but also substantially reduces neuronal damage and improves behavioral outcome. Our study suggests that agents that reduce SREBP-1 activation such as Indip may represent a new class of neuroprotective therapeutics against stroke.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SREBP-1 is activated in a time- and calcium-sensitive calpain-dependent manner in response to NMDA insult in cortical neuronal cultures.
Figure 2: Nuclear translocation of nt-SREBP-1 is induced by NMDA insult and is associated with neuronal apoptosis.
Figure 3: Reduced mature nt-SREBP-1 protects against NMDA-induced excitotoxicity.
Figure 4: Indip reduces NMDA-dependent SREBP-1 activation by decreasing Insig-1 ubiquitination and degradation.
Figure 5: Indip protects against NMDA-induced excitotoxicity and OGD-induced neuronal death in neuronal cultures.
Figure 6: Indip blocks MCAo-induced SREBP-1 activation and protects against ischemia-induced neuronal damage and behavioral deficits.

References

  1. 1

    Choi, D.W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465–469 (1988).

    CAS  Article  Google Scholar 

  2. 2

    Lipton, S.A. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat. Rev. Drug Discov. 5, 160–170 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Ikonomidou, C. & Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1, 383–386 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Kemp, J.A. & McKernan, R.M. NMDA receptor pathways as drug targets. Nat. Neurosci. 5 (Suppl), 1039–1042 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Lee, J.M., Zipfel, G.J. & Choi, D.W. The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7–A14 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Aarts, M. et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298, 846–850 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Camandola, S. & Mattson, M.P. NF-κB as a therapeutic target in neurodegenerative diseases. Expert Opin. Ther. Targets 11, 123–132 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Hardingham, G.E., Arnold, F.J. & Bading, H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Hetman, M. & Kharebava, G. Survival signaling pathways activated by NMDA receptors. Curr. Top. Med. Chem. 6, 787–799 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Rao, V.R. & Finkbeiner, S. NMDA and AMPA receptors: old channels, new tricks. Trends Neurosci. 30, 284–291 (2007).

    CAS  Article  Google Scholar 

  11. 11

    West, A.E., Griffith, E.C. & Greenberg, M.E. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Zhang, S.J. et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53, 549–562 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Zou, J. & Crews, F. CREB and NF-κB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell. Mol. Neurobiol. 26, 385–405 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Espenshade, P.J. & Hughes, A.L. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41, 401–427 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Goldstein, J.L., DeBose-Boyd, R.A. & Brown, M.S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Adibhatla, R.M., Hatcher, J.F. & Dempsey, R.J. Lipids and lipidomics in brain injury and diseases. AAPS J. 8, E314–E321 (2006).

    Article  Google Scholar 

  17. 17

    Siesjö, B.K. & Katsura, K. Ischemic brain damage: focus on lipids and lipid mediators. Adv. Exp. Med. Biol. 318, 41–56 (1992).

    Article  Google Scholar 

  18. 18

    Sandberg, M.B. et al. Glucose-induced lipogenesis in pancreatic beta cells is dependent on SREBP-1. Mol. Cell. Endocrinol. 240, 94–106 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Takahashi, A. et al. Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta cells. Diabetes 54, 492–499 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Wang, H. et al. The transcription factor SREBP-1c is instrumental in the development of betacell dysfunction. J. Biol. Chem. 278, 16622–16629 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Wang, H., Kouri, G. & Wollheim, C.B. ER stress and SREBP-1 activation are implicated in beta cell glucolipotoxicity. J. Cell Sci. 118, 3905–3915 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Yamashita, T. et al. Role of uncoupling protein-2 up-regulation and triglyceride accumulation in impaired glucose-stimulated insulin secretion in a beta cell lipotoxicity model overexpressing sterol regulatory element–binding protein-1c. Endocrinology 145, 3566–3577 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Chang, Y.C., Bien, C.M., Lee, H., Espenshade, P.J. & Kwon-Chung, K.J. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol. Microbiol. 64, 614–629 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Todd, B.L., Stewart, E.V., Burg, J.S., Hughes, A.L. & Espenshade, P.J. Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol. Cell. Biol. 26, 2817–2831 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Taghibiglou, C. et al. Essential role of SBP-1 activation in oxygen deprivation induced lipid accumulation and increase in body width/length ratio in Caenorhabditis elegans. FEBS Lett. 583, 831–834 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Hardingham, G.E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Liu, Y. et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci. 27, 2846–2857 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Zhou, M. & Baudry, M. Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J. Neurosci. 26, 2956–2963 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Liu, L. et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Tigaret, C.M. et al. Subunit dependencies of N-methyl-d-aspartate (NMDA) receptor–induced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. Mol. Pharmacol. 69, 1251–1259 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Mutel, V. et al. In vitro binding properties in rat brain of [3H]Ro 25–6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J. Neurochem. 70, 2147–2155 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Mattson, M.P. Calcium and neurodegeneration. Aging Cell 6, 337–350 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Wang, X. et al. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 15, 1012–1020 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Horton, J.D. et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. USA 100, 12027–12032 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Horton, J.D. et al. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element–binding protein-2. J. Clin. Invest. 101, 2331–2339 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Nohturfft, A., Brown, M.S. & Goldstein, J.L. Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain. J. Biol. Chem. 273, 17243–17250 (1998).

    CAS  Article  Google Scholar 

  37. 37

    Sun, L.P., Li, L., Goldstein, J.L. & Brown, M.S. Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J. Biol. Chem. 280, 26483–26490 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Yang, T. et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489–500 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Gong, Y. et al. Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake. Cell Metab. 3, 15–24 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Lee, J.N., Gong, Y., Zhang, X. & Ye, J. Proteasomal degradation of ubiquitinated Insig proteins is determined by serine residues flanking ubiquitinated lysines. Proc. Natl. Acad. Sci. USA 103, 4958–4963 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Lee, J.N., Song, B., DeBose-Boyd, R.A. & Ye, J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 281, 39308–39315 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Lee, J.N. & Ye, J. Proteolytic activation of sterol regulatory element–binding protein induced by cellular stress through depletion of Insig-1. J. Biol. Chem. 279, 45257–45265 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Borsello, T. et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med. 9, 1180–1186 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Liu, X.J. et al. Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat. Med. 14, 1325–1332 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Wong, T.P. et al. Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc. Natl. Acad. Sci. USA 104, 11471–11476 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Goldberg, M.P. & Choi, D.W. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 13, 3510–3524 (1993).

    CAS  Article  Google Scholar 

  48. 48

    Bederson, J.B. et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17, 472–476 (1986).

    CAS  Article  Google Scholar 

  49. 49

    Schmued, L.C., Albertson, C. & Slikker, W. Jr. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 751, 37–46 (1997).

    CAS  Article  Google Scholar 

  50. 50

    Park, H.J. et al. Role of sterol regulatory element binding proteins in the regulation of Gαi2 expression in cultured atrial cells. Circ. Res. 91, 32–37 (2002).

    CAS  Article  Google Scholar 

  51. 51

    Park, H.J. et al. Parasympathetic response in chick myocytes and mouse heart is controlled by SREBP. J. Clin. Invest. 118, 259–271 (2008).

    CAS  Article  Google Scholar 

  52. 52

    Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    CAS  Article  Google Scholar 

  53. 53

    Lee, S.H. et al. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319, 1253–1256 (2008).

    CAS  Article  Google Scholar 

  54. 54

    Mielke, J.G. & Wang, Y.T. Insulin exerts neuroprotection by counteracting the decrease in cell-surface GABA receptors following oxygen-glucose deprivation in cultured cortical neurons. J. Neurochem. 92, 103–113 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Ye (University of Texas Southwestern Medical Center) for myc–Insig-1 plasmid, T. Osborne (University of California–Irvine) for Flag–nt-SREBP-1 and Y. P. Auberson (Novartis Pharma AG) for the generous gift of NVP-AAM077. We also thank J. Wang for his technical support. This work was supported by the Heart and Stroke Foundation of British Columbia and the Yukon, the Canadian Institutes of Health Research and CHDI (Cure Huntington's Disease Initiative) Foundation. Y.T.W. is a Howard Hughes Medical Institute International Scholar and Heart and Stroke Foundation of British Columbia and the Yukon Chair in Stroke Research. C.T. was supported by post-doctoral fellowships from the Canadian Institutes of Health Research and Michael Smith Foundation for Health.

Author information

Affiliations

Authors

Contributions

C.T. initiated the study, wrote the manuscript and performed all biochemical experiments, H.G.S.M. performed most cell biology experiments and helped write the manuscript, T.W.L. performed the in vivo studies, T.C. and S.Z. contributed to the fluorescent microscopy, S.P., L.K. and Y.H.W. performed mRNA analysis and transcription factor screen, Y.L. aided in the in vivo studies, J.L. and J.Z.Z.W. designed and made Insig-1–specific antibody, E.L. aided in manuscript preparation, Y.P.L. and J.-H.I. prepared neuronal cultures and developed transfection methods, M.S.C. cosupervised the experiments of mRNA analysis transcription factor screen, and Y.T.W. designed the study and supervised the overall project.

Corresponding author

Correspondence to Yu Tian Wang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2150 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taghibiglou, C., Martin, H., Lai, T. et al. Role of NMDA receptor–dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nat Med 15, 1399–1406 (2009). https://doi.org/10.1038/nm.2064

Download citation

Further reading