Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors


The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-γ (IFN-γ)–producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X7 purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1β (IL-1β). The priming of IFN-γ–producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3−/−) or caspase-1–deficient (Casp-1−/−) mice unless exogenous IL-1β is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7−/− or Nlrp3−/− or Casp1−/− hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The tumoricidal activity of oxaliplatin depends on the NLRP3 inflammasome.
Figure 2: ATP release by dying tumor cells dictates the immunogenicity of cell death.
Figure 3: Purinergic P2RX7 receptors are mandatory for the DC-mediated immunogenicity of cell death.
Figure 4: Activation of caspase-1 and IL-1β secretion in DCs exposed to dying tumor cells.
Figure 5: The NLRP3 inflammasome is required for the elicitation of an adaptive antitumor immune response.
Figure 6: NLRP3 inflammasome-dependent differentiation of tumor specific CD8+ T cells toward IFNγ polarization.


  1. 1

    Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Lau, C.M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Chen, C.J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851–856 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Fritz, J.H., Ferrero, R.L., Philpott, D.J. & Girardin, S.E. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250–1257 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353–389 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Lotze, M.T. et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol. Rev. 220, 60–81 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Apetoh, L. et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Martinon, F. & Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 14, 10–22 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Di Virgilio, F. Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol. Sci. 28, 465–472 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Agostini, L. et al. NALP3 forms an IL-1β–processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Poyet, J.L. et al. Identification of Ipaf, a human caspase-1–activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Sutterwala, F.S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Ferrari, D. et al. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 176, 3877–3883 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Kanneganti, T.D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Kanneganti, T.D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Ogura, Y., Sutterwala, F.S. & Flavell, R.A. The inflammasome: first line of the immune response to cell stress. Cell 126, 659–662 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Dinarello, C.A. Interleukin-1β, interleukin-18, and the interleukin-1β converting enzyme. Ann. NY Acad. Sci. 856, 1–11 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Brydges, S. & Kastner, D.L. The systemic autoinflammatory diseases: inborn errors of the innate immune system. Curr. Top. Microbiol. Immunol. 305, 127–160 (2006).

    CAS  PubMed  Google Scholar 

  32. 32

    Reginato, A.M. & Olsen, B.R. Genetics and experimental models of crystal-induced arthritis. Lessons learned from mice and men: is it crystal clear? Curr. Opin. Rheumatol. 19, 134–145 (2007).

    CAS  Article  Google Scholar 

  33. 33

    McIntyre, K.W. et al. Inhibition of interleukin 1 (IL-1) binding and bioactivity in vitro and modulation of acute inflammation in vivo by IL-1 receptor antagonist and anti–IL-1 receptor monoclonal antibody. J. Exp. Med. 173, 931–939 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Selzner, N. et al. Water induces autocrine stimulation of tumor cell killing through ATP release and P2 receptor binding. Cell Death Differ. 11 (Suppl 2), S172–S180 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem. 276, 125–132 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Srinivasula, S.M. et al. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem. 277, 21119–21122 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Koebel, C.M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Gu, B.J. et al. A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J. Biol. Chem. 276, 11135–11142 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Sluyter, R., Shemon, A.N. & Wiley, J.S. Glu496 to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1β release from human monocytes. J. Immunol. 172, 3399–3405 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Bours, M.J., Swennen, E.L., Di Virgilio, F., Cronstein, B.N. & Dagnelie, P.C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112, 358–404 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Blankenstein, T. The role of tumor stroma in the interaction between tumor and immune system. Curr. Opin. Immunol. 17, 180–186 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Hinrichs, C.S., Gattinoni, L. & Restifo, N.P. Programming CD8+ T cells for effective immunotherapy. Curr. Opin. Immunol. 18, 363–370 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Ferrari, D., Chiozzi, P., Falzoni, S., Hanau, S. & Di Virgilio, F. Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin. J. Exp. Med. 185, 579–582 (1997).

    CAS  Article  Google Scholar 

  44. 44

    Adachi, O. et al. Targeted disruption of the Myd88 gene results in loss of IL-1– and IL-18–mediated function. Immunity 9, 143–150 (1998).

    CAS  Article  Google Scholar 

  45. 45

    Franchi, L., Kanneganti, T.D., Dubyak, G.R. & Nunez, G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282, 18810–18818 (2007).

    CAS  Article  Google Scholar 

  46. 46

    Muruve, D.A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    CAS  Article  Google Scholar 

  47. 47

    Pétrilli, V., Dostert, C., Muruve, D.A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615–622 (2007).

    Article  Google Scholar 

  48. 48

    Krelin, Y. et al. Interleukin-1β–driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res. 67, 1062–1071 (2007).

    CAS  Article  Google Scholar 

  49. 49

    Hagemann, T., Balkwill, F. & Lawrence, T. Inflammation and cancer: a double-edged sword. Cancer Cell 12, 300–301 (2007).

    CAS  Article  Google Scholar 

  50. 50

    Greten, F.R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    CAS  Article  Google Scholar 

  51. 51

    Naugler, W.E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    CAS  Article  Google Scholar 

  52. 52

    Balkwill, F., Charles, K.A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    CAS  Article  Google Scholar 

Download references


We thank I. Couillin (CNRS) and A. Mignon (Cochin Hospital) for helpful discussion and for providing IL-1RA, R. Schreiber (Washington University School of Medicine) for monoclonal antibodies to IL-1α, IL-1β and IL-1R, H. Yang (Feinstein Institute for Medical Research) for antibody to HMGB1, H. Yagita (School of Medicine, Juntendo University) for the N2B2 antibody to mouse TRAIL, J.-C. Guéry (INSERM) for IL12rb2−/− mice, V. Dixit (Pennington Biomedical Research Center) for Pycard−/− mice, M. Albert (Pasteur Institute) for membrane-bound OVA–transfected mouse embryonic fibroblast cells, S. Forget and J. Bombled for access to the genomics platform, V. Vasseur and the Institut Gustave Roussy animal facility for breeding of transgenic mice, I. Martins for help in ATP release screening and A. Boissonnas (INSERM, Curie Institute) for providing OT1-GFP mice. We are deeply indebted to P. Arveux and S. Dabakuyo for useful help with the statistical analyses. The authors are supported by grants from the Ligue Nationale contre le Cancer (to L. Aymeric., G.K. and L.Z.), the Fondation pour la Recherche Médicale (to L. Apetoh., G.K., E.U., F.S. and L.Z.), the European Union (INFLACARE grant), the association for International cancer research (to G.K.) Cancéropôle Ile-de-France, Institut National du Cancer (L.Z., G.K.), Agence Nationale pour la Recherche (to G.K.), the European Molecular Biology Organization (L. Apetoh.), INSERM (A.T.), the National Health, Association pour la recherche sur le cancer RC (to G.M.), National Health and Medical Research Council of Australia, Cancer Council of Victoria, the China Scholarship Council (Y.M.) and the Leukemia Foundation (M.J.S., N.M.M. and N.M.H.). K.V. is the recipient of a European Respiratory Society Fellowship (number 605).

Author information




F.G., L. Aymeric., A.T., L. Apetoh., T.P., F.S., G.M., E.U., Y.M., N.M.M., N.M.H. and M.J.S. performed in vitro and in vivo experiments. C.O., E.T., P.G. and A.C. performed in vitro experiments. A.T. and T.P. performed immunofluorescence experiments. M.U., J.-L.P., B.R., J.K. and J.T. provided transgenic cells or mice and gave scientific advice. K.V., F.A., R.L., F.G. and A.T. performed the single nucleotide polymorphism analysis on cohorts of subjects with cancer. F.G., L. Apetoh., M.J.S. and A.T. prepared the figures and drafted the manuscript. G.K. and L.Z. designed the study and wrote the manuscript. M.J.S., G.K. and L.Z. all contributed equally to the design of the experiments and to the writing of the manuscript.

Corresponding authors

Correspondence to Guido Kroemer or Laurence Zitvogel.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 2928 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghiringhelli, F., Apetoh, L., Tesniere, A. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med 15, 1170–1178 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing