Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Playing for half the deck: the molecular biology of meiosis

Abstract

Meiosis reduces the number of chromosomes carried by a diploid organism by half, partitioning precisely one haploid genome into each gamete. The basic events of meiosis reflect three meiosis-specific processes: first, pairing and synapsis of homologous chromosomes; second, high-frequency, precisely controlled, reciprocal crossover; third, the regulation of sister-chromatid cohesion (SCC), such that during anaphase I, SCC is released along the chromosome arms, but not at the centromeres. The failure of any of these processes can result in aneuploidy or a failure of meiotic segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Meiosis.
Figure 2: Directionality of the meiotic process — D. melanogaster versus S. cerevisiae.
Figure 3: Schematic representation of a bivalent at metaphase I arrest.
Figure 4: Distribution of exchange along the X chromosome arm.

Similar content being viewed by others

References

  1. Nicklas, R.B. Chromosome segregation mechanisms. Genetics 78, 205–213 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Page, S.L. & Hawley, R.S. c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev. 15, 3130–3143 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rockmill, B. & Roeder, G.S. Meiosis in asynaptic yeast. Genetics 126, 563–574 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baudat, F. et al. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Grelon, M. et al. AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J. 20, 589–600 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hawley, R.S. & Arbel, T. Yeast genetics and the fall of the classical view of meiosis. Cell 72, 301–303 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. McKim, K.S. et al. Meiotic synapsis in the absence of recombination. Science 279, 876–878 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. McKim, K.S. & Hayashi-Hagihara, A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 12, 2932–2942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dernburg, A.F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Walker, M.Y. & Hawley, R.S. Hanging on to your homolog: the roles of pairing, synapsis and recombination in the maintenance of homolog adhesion. Chromosoma 109, 3–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Cervantes, M.D., Farah, J.A. & Smith G.R. Meiotic DNA breaks associated with recombination in S. pombe. Mol. Cell 5 883–888 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Rasmusson, K. The transformation of the Synaptonemal Complex into the 'elimination chromatin' in Bombyx mori oocytes. Chromosoma 60, 205–221 (1977).

    Article  Google Scholar 

  13. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev.Genet. 33, 603–754 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Keeney, S., Giroux, C.N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Romanienko, P.J. & Camerini-Otero, R.D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Szostak, J.W. et al. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Schwacha, A. & Kleckner, N. Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76, 51–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Schwacha, A. & Kleckner, N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Allers, T. & Lichten, M. Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol. Cell 8 225–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Cromie, G.A. & Leach, D.R. Control of crossing over. Mol. Cell 6, 815–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Zwick, M.E., Cutler, D.J. & Langley, C.H. Classic Weinstein: tetrad analysis, genetic variation and achiasmate segregation in Drosophila and humans. Genetics 152, 1615–1629 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones, G.H. The control of chiasma distribution. Symp. Soc. Exp. Biol. 38, 293–320 (1984).

    CAS  PubMed  Google Scholar 

  23. Carpenter, A.T.C. Genetic Recombination (ed. Kucherlapati, R.) 529–549 (ASM Press, Washington DC, 1988).

    Google Scholar 

  24. Hulten, M. Chiasma formation, crossing-over and recombination in meiosis. Trends Genet. 10, 112–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Lichten, M. & Haber, J.E. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123, 261–268 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burgoyne, P.S. Mammalian X and Y crossover. Nature 319, 258–259 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Novak, J.E., Ross-Macdonald, P.B. & Roeder, G.S. The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158, 1013–1025 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Page, S.L. et al. Genetic studies of mei-P26 reveal a link between the processes that control germ cell proliferation in both sexes and those that control meiotic exchange in Drosophila. Genetics 155, 1757–1772 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McKim, K.S. & Hawley, R.S. Chromosomal control of meiotic cell division. Science 270, 1595–1601 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Nicklas, R.B. Chromosome distribution: experiments on cell hybrids and in vitro. Philos. Trans. R. Soc. Lond. B 277, 267–276 (1977).

    Article  CAS  Google Scholar 

  31. Nicklas, R.B. & Staehly, C.A. Chromosome micromanipulation. I. The mechanics of chromosome attachment to the spindle. Chromosoma 21, 1–16 (1967).

    Article  CAS  PubMed  Google Scholar 

  32. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Theurkauf, W.E. & Hawley, R.S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–1180 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Darlington, C.D. Recent Advances in Cytology (The Blakiston Company, Philadelphia, 1932).

    Google Scholar 

  35. Hawley, R.S. Genetic Recombination (ed. Kucherlapati, R.) 497–528 (ASM Press, Washington DC, 1988).

    Google Scholar 

  36. Lee, J.Y. & Orr-Weaver, T.L. The molecular basis of sister-chromatid cohesion. Annu. Rev. Cell Dev. Biol. 17, 753–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Maguire, M.P., Paredes, A.M. & Riess, R.W. The desynaptic mutant of maize as a combined defect of synaptonemal complex and chiasma maintenance. Genome 34, 879–887 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Maguire, M. Evidence for separate control of crossing over and chiasma maintenance in maize. Chromosoma 65, 173–183 (1978).

    Article  Google Scholar 

  39. Maguire, M.P. The need for a chiasma binder. J. Theor. Biol. 48, 485–487 (1974).

    Article  CAS  PubMed  Google Scholar 

  40. Maguire, M.P. A possible role for the synaptonemal complex in chiasma maintenance. Exp. Cell Res. 112, 297–308 (1978).

    Article  CAS  PubMed  Google Scholar 

  41. Bickel, S.E. et al. Genetic interactions between mei-S332 and ord in the control of sister-chromatid cohesion. Genetics 150, 1467–1476 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buonomo, S.B. et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103, 387–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Hartman, T. et al. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 151, 613–626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Heemst, D. & Heyting, C. Sister chromatid cohesion and recombination in meiosis. Chromosoma 109, 10–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Warren, W.D. et al. The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr. Biol. 10, 1463–1466 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Shonn, M.A., McCarroll, R. & Murray, A.W. Spo13 protects meiotic cohesin at centromeres in meiosis I. Genes Dev. 16, 1659–1671 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toth, A. et al. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103, 1155–1168 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Orr-Weaver, T.L. Meiosis in Drosophila: seeing is believing. Proc. Natl Acad. Sci. USA 92, 10443–10449 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shonn, M.A., McCarroll, R. & Murray, A.W. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289, 300–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Nicklas, R.B., Ward, S.C. & Gorbsky, G.J. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J. Cell Biol. 130, 929–939 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. LeMaire-Adkins, R., Radke, K. & Hunt, P.A. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J. Cell Biol. 139, 1611–1619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pelttari, J. et al. A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol. Cell Biol. 21, 5667–5677 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hassold, T.J. et al. XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region. Am. J. Hum. Genet. 49, 253–260 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Koehler, K.E. et al. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nature Genet. 14, 406–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Lamb, N.E. et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nature Genet. 14, 400–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Hassold, T., S. Sherman, & P.A. Hunt, The origin of trisomy in humans. Prog. Clin. Biol. Res. 393, 1–12 (1995).

    CAS  PubMed  Google Scholar 

  58. MacDonald, M. et al. The origin of 47,XXY and 47,XXX aneuploidy: heterogeneous mechanisms and role of aberrant recombination. Hum. Mol. Genet. 3, 1365–1371 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Lorda-Sanchez, I. et al. Molecular study of 45,X conceptuses: correlation with clinical findings. Am. J. Med. Genet. 42, 487–490 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Hassold, T. et al. Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am. J. Hum. Genet. 57, 867–874 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ross, L.O., Maxfield, R. & Dawson, D. Exchanges are not equally able to enhance meiotic chromosome segregation in yeast. Proc. Natl Acad. Sci. USA 93, 4979–4983 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carpenter, A.T. A meiotic mutant defective in distributive disjunction in Drosophila melanogaster. Genetics 73, 393–428 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zitron, A.E. & Hawley, R.S. The genetic analysis of distributive segregation in Drosophila melanogaster. I. Isolation and characterization of Aberrant X segregation (Axs), a mutation defective in chromosome partner choice. Genetics 122, 801–821 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rasooly, R.S. et al. The lethal(1)TW-6cs mutation of Drosophila melanogaster is a dominant antimorphic allele of nod and is associated with a single base change in the putative ATP-binding domain. Genetics 129, 409–422 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hawley, R.S. & Theurkauf, W.E. Requiem for the distributive system: Achiasmate segregation in Drosophila females. Trends Genet. 9, 310–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Wolf, K.W. How meiotic cells deal with non-exchange chromosomes. Bioessays 16, 107–114 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. McKim, K.S. & Rose, A.M. Chromosome I duplications in Caenorhabditis elegans. Genetics 124, 115–132 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dawson, D.S., Murray, A.W. & Szostak, J.W. An alternative pathway for meiotic chromosome segregation in yeast. Science 234, 713–717 (1986).

    Article  CAS  PubMed  Google Scholar 

  69. Molnar, M. et al. Live observation of fission yeast meiosis in recombination-deficient mutants: a study on achiasmate chromosome segregation. J. Cell Sci. 114, 2843–2853 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Green-Marroquin, B.L. et al. Orientation of nonrandomly segregating sex chromosomes in spermatocytes of the flea beetle, Alagoasa bicolor L. Chromosoma. 110, 32–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Dernburg, A.F., Sedat, J.W. & Hawley, R.S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86, 135–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Hawley, R.S. et al. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev. Genet. 13, 440–467 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Matthies, H.J., Baskin, R.J. & Hawley, R.S. Orphan Kinesin NOD Lacks Motile Properties But Does Possess a Microtubule-stimulated ATPase Activity. Mol. Biol. Cell 12, 4000–4012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Loidl, J., Scherthan, H. & Kaback, D.B. Physical association between nonhomologous chromosomes precedes distributive disjunction in yeast. Proc. Natl Acad. Sci. USA 91, 331–334 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lynn, A. et al. Patterns of meiotic recombination on the long arm of human chromosome 21. Genome Res. 10, 1319–1332 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Tease, C., Hartshorne, G.M. & Hulten, M.A. Patterns of meiotic recombination in human fetal oocytes. Am. J. Hum. Genet. 70, 1469–1479 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sears, E.R. Misdivision of univalents in common wheat. Chromosoma 4, 535–550 (1952).

    Article  CAS  PubMed  Google Scholar 

  78. Orr-Weaver, T. Meiotic nondisjunction does the two-step. Nature Genet. 14, 374–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Hawley, R.S., Frazier, J.A. & Rasooly, R. Separation anxiety: the etiology of nondisjunction in flies and people. Hum. Mol. Genet. 3, 1521–1528 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Koehler, K.E. et al. Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 5, 1495–1504 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Eichenlaub-Ritter, U. Genetics of oocyte ageing. Maturitas 30, 143–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Freeman, S.B. et al. Women with a reduced ovarian complement may have an increased risk for a child with Down syndrome. Am. J. Hum. Genet. 66, 1680–1683 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sekelsky, J.J. et al. Identification of novel Drosophila meiotic genes recovered in a P- element screen. Genetics 152 529–542 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kline, J. et al. Trisomic pregnancy and earlier age at menopause. Am. J. Hum. Genet. 67 395–404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Angell, R. First-meiotic-division nondisjunction in human oocytes. Am. J. Hum. Genet. 61, 23–32 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Hassold and members of the Hawley laboratory for critical comments on the text. We also thank K. McKim and K. Koehler for providing us with the initials drafts of Figs 3 and 4, respectively. Finally, we are grateful to one anonymous reviewer, whose constructive commentary aided us enormously.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scott Hawley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champion, M., Hawley, R. Playing for half the deck: the molecular biology of meiosis. Nat Med 8 (Suppl 10), S50–S56 (2002). https://doi.org/10.1038/nm-fertilityS50

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm-fertilityS50

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing