Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bcl11b is required for differentiation and survival of αβ T lymphocytes

Abstract

The gene Bcl11b, which encodes zinc finger proteins, and its paralog, Bcl11a, are associated with immune-system malignancies. We have generated Bcl11b-deficient mice that show a block at the CD4CD8 double-negative stage of thymocyte development without any impairment in cells of B- or γδ T cell lineages. The Bcl11b−/− thymocytes showed unsuccessful recombination of Vβ to Dβ and lacked the pre–T cell receptor (TCR) complex on the cell surface, owing to the absence of Tcrb mRNA expression. In addition, we saw profound apoptosis in the thymus of neonatal Bcl11b−/− mice. These results suggest that Bcl11b is a key regulator of both differentiation and survival during thymocyte development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bcl11b transcripts and proteins in the thymus.
Figure 2: Targeting strategy for Bcl11b knockout mice.
Figure 3: Developmental arrest of thymocytes in Bcl11b−/− mice.
Figure 4: Reconstitution of B and γδ T cells in SCID mice transferred with fetal liver cells.
Figure 5: Apoptosis assay of thymus.
Figure 6: Expression of apoptosis-related proteins.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fischer, A. & Malissen, B. Natural and engineered disorders of lymphocyte development. Science 280, 237–243 (1998).

    Article  CAS  Google Scholar 

  2. von Boehmer, H. et al. Pleiotropic changes controlled by the pre-T-cell receptor. Curr. Opin. Immunol. 11, 135–142 (1999).

    Article  CAS  Google Scholar 

  3. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  Google Scholar 

  4. Fehling, H.J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  Google Scholar 

  5. Haks, M.C., Krimpenfort, P., Borst, J. & Kruisbeek, A.M. The CD3γ chain is essential for development of both the TCRαβ and TCRγδ lineages. EMBO J. 17, 1871–1882 (1998).

    Article  CAS  Google Scholar 

  6. Mombaerts, P., Anderson, S.J., Perlmutter, R.M., Mak, T.W. & Tonegawa, S. An activated lck transgene promotes thymocyte development in RAG-1 mutant mice. Immunity 1, 261–267 (1994).

    Article  CAS  Google Scholar 

  7. Molina, T.J. et al. Profound block in thymocyte development in mice lacking p56lck. Nature 357, 161–164 (1992).

    Article  CAS  Google Scholar 

  8. Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von Boehmer, H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nat. Immunol. 2, 403–409 (2001).

    Article  CAS  Google Scholar 

  9. Zhang, L., Camerini, V., Bender, T.P. & Ravichandran, K.S. A nonredundant role for the adapter protein Shc in thymic T cell development. Nat. Immunol. 3, 749–755 (2002).

    Article  CAS  Google Scholar 

  10. Bueno, O.F., Brandt, E.B., Rothenberg, M.E. & Molkentin, J.D. Defective T cell development and function in calcineurin Aβ-deficient mice. Proc. Natl. Acad. Sci. USA 99, 9398–9403 (2002).

    Article  CAS  Google Scholar 

  11. van de Wetering, M., de Lau, W. & Clevers, H. WNT signaling and lymphocyte development. Cell 109, S13–S19 (2002).

    Article  CAS  Google Scholar 

  12. Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin-TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat. Immunol. 2, 691–697 (2001).

    Article  CAS  Google Scholar 

  13. Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat. Immunol. 2, 863–969 (2001).

    Article  CAS  Google Scholar 

  14. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    Article  CAS  Google Scholar 

  15. Newton, K., Harris, A.W. & Strasser, A. FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J. 19, 931–941 (2000).

    Article  CAS  Google Scholar 

  16. Jiang, D., Lenardo, M.J. & Zuniga-Pflücker, J.C. p53 prevents maturation to the CD4+CD8+ stage of thymocyte differentiation in the absence of T cell receptor rearrangement. J. Exp. Med. 183, 1923–1928 (1996).

    Article  CAS  Google Scholar 

  17. Haks, M.C., Krimpenfort, P., van den Brakel, J.H.N. & Kruisbeek, A.M. Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 11, 91–101 (1999).

    Article  CAS  Google Scholar 

  18. Shinbo, T. et al. Allelic loss mapping and physical delineation of a region harboring a putative thymic lymphoma suppressor gene on mouse chromosome 12. Oncogene 18, 4131–4136 (1999).

    Article  CAS  Google Scholar 

  19. Wakabayashi, Y. et al. Homozygous deletions and point mutations of the Rit1/Bcl11b gene in γ-ray induced mouse thymic lymphomas. Biophys. Biochem. Res. Commun. 301, 598–603.

  20. Satterwhite, E. et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 98, 3413–3420 (2001).

    Article  CAS  Google Scholar 

  21. Avram, D. et al. Isolation of a novel family of C2H2 zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J. Biol. Chem. 275, 10315–10322 (2000).

    Article  CAS  Google Scholar 

  22. Yagi, T. et al. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl. Acad. Sci. USA 87, 9918–9922 (1990).

    Article  CAS  Google Scholar 

  23. Hirokawa, K., Utsuyama, M., Moriizumi, E. & Handa, S. Analysis of the thymic microenvironment by monoclonal antibodies with special reference to thymic nurse cells. Thymus 8, 349–360 (1986).

    CAS  PubMed  Google Scholar 

  24. Polyak, K.J. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes & Dev. 8, 9–22 (1994).

    Article  CAS  Google Scholar 

  25. Wang, X. The expanding role of mitochondria in apoptosis. Genes & Dev. 15, 2922–2933 (2001).

    CAS  Google Scholar 

  26. Cheng, E.H. et al. BCL-2, BCL-x(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    Article  CAS  Google Scholar 

  27. Ma, A. et al. Bclx regulates the survival of double-positive thymocytes. Proc. Natl. Acad. Sci. USA 92, 4763–4767 (1995).

    Article  CAS  Google Scholar 

  28. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  Google Scholar 

  29. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  Google Scholar 

  30. Sleckman, B.P., Gorman, J.R. & Alt, F.W. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu. Rev. Immunol. 14, 459–481 (1996).

    Article  CAS  Google Scholar 

  31. Lauzurica, P. & Krangel, M.S. Enhancer-dependent and -independent steps in the rearrangement of a human T cell receptor delta transgene. J. Exp. Med. 179, 43–55 (1994).

    Article  CAS  Google Scholar 

  32. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000).

    Article  CAS  Google Scholar 

  33. Avram, D., Fields, A., Senawong, T., Topark-Ngarm, A. & Leid, M. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. Biochem. J. 368, 555–563 (2002).

    Article  CAS  Google Scholar 

  34. Nisha, N.H., Kang, C., Hsing, L.C., Zhang, J. & Winoto, A. T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc. Natl. Acad. Sci. USA 98, 6307–6312 (2001).

    Article  Google Scholar 

  35. Engel, I., Johns, C., Bain, G., Rivera, R.R. & Murre, C. Early thymocyte development is regulated by modulation of E2A protein activity. J. Exp. Med. 194, 733–745 (2001).

    Article  CAS  Google Scholar 

  36. Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998).

    Article  CAS  Google Scholar 

  37. Evan, G.I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  Google Scholar 

  38. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  Google Scholar 

  39. Almasan, A. et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc. Natl. Acad. Sci. USA 92, 5436–5440 (1995).

    Article  CAS  Google Scholar 

  40. Knudsen, K.E. et al. RB-dependent S-phase response to DNA damage. Mol. Cell. Biol. 20, 7751–7763 (2000).

    Article  CAS  Google Scholar 

  41. Nakamura, T. et al. Evi9 encodes a novel zinc finger protein that physically interacts with BCL6, a known human B-cell proto-oncogene product. Mol. Cell. Biol. 20, 3178–3186 (2000).

    Article  CAS  Google Scholar 

  42. Liu, P. et al. Bcl11a is essential for normal lymphoid development. Nat. Immunol. advance online publication, 28 April 2003 (doi:10.1038/ni925).

  43. Anderson, S.J., Abraham, K.M., Nakayama, T., Singer, A. & Perlmutter, R.M. Inhibition of T-cell receptor β-chain gene rearrangement by overexpression of the non-receptor protein tyrosine kinase p56lck. EMBO J. 11, 4877–4886 (1992).

    Article  CAS  Google Scholar 

  44. Nutt, S.L., Heavey, B., Rolink, A.G., & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  Google Scholar 

  45. Watanabe, H., Miyaji, C., Seki, S. & Abo, T. c-kit+ stem cells and thymocyte precursors in the livers of adult mice. J. Exp. Med. 184, 687–693 (1996).

    Article  CAS  Google Scholar 

  46. Toba, K. et al. Cell kinetic study of normal human bone marrow hematopoiesis and acute leukemia using 7AAD/PY. Eur. J. Haematol. 64, 10–21 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for scientific research from the Ministry of Education, Science, Culture and Sports and by a Health Science Research Grant from the Ministry of Health, Labor and Welfare of Japan. We thank K. Toba for cell cycle analysis by flow cytometry, and A. Balmain, K. Hirokawa, T. Abo, M. Naito and A. Shimizu for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kominami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakabayashi, Y., Watanabe, H., Inoue, J. et al. Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nat Immunol 4, 533–539 (2003). https://doi.org/10.1038/ni927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing