Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E-proteins directly regulate expression of activation-induced deaminase in mature B cells

Abstract

Activated mature B cells in which the DNA-binding activity of E-proteins has been disrupted fail to undergo class switch recombination. Here we show that activated B cells overexpressing the antagonist helix-loop-helix protein Id3 do not induce expression of the murine Aicda gene encoding activation-induced deaminase (AID). A highly conserved intronic regulatory element in Aicda binds E-proteins both in vitro and in vivo. The transcriptional activity of this element is regulated by E-proteins. We show that the enforced expression of AID in cells overexpressing Id3 partially restores class switch recombination. Taken together, our observations link helix-loop-helix activity and Aicda gene expression in a common pathway, in which E-protein activity is required for the efficient induction of Aicda transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aicda expression in activated B cells overexpressing the inhibitory HLH protein Id3.
Figure 2: Activation of Aicda transcription by E47.
Figure 3: An intronic regulatory region in the Aicda locus is activated by E-proteins.
Figure 4: E47 and E2-2 bind to E-box sites in the AIDE1 enhancer in activated B cells.
Figure 5: In vivo occupancy of the E-box sites in the AIDE1 enhancer in activated B cells.
Figure 6: Ectopic expression of AID in Id3-expressing B cells partially rescues CSR.
Figure 7: Germline transcription of the Ig S region in B cells expressing Id3.

Similar content being viewed by others

References

  1. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  2. Glimcher, L.H. & Singh, H. Transcription factors in lymphocyte development—T and B cells get together. Cell 96, 13–23 (1999).

    Article  CAS  Google Scholar 

  3. Quong, M.W., Harris, D.P., Swain, S.L. & Murre, C. E2A activity is induced during B-cell activation to promote immunoglobulin class switch recombination. EMBO J. 18, 6307–6318 (1999).

    Article  CAS  Google Scholar 

  4. Murre, C., McCaw, P.S. & Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777–783 (1989).

    Article  CAS  Google Scholar 

  5. Quong, M.W., Romanow, W.J. & Murre, C. E protein function in lymphocyte development. Annu. Rev. Immunol. 20, 301–322 (2002).

    Article  CAS  Google Scholar 

  6. Murre, C. et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–544 (1989).

    Article  CAS  Google Scholar 

  7. Bain, G., Gruenwald, S. & Murre, C. E2A and E2-2 are subunits of B-cell-specific E2-box DNA-binding proteins. Mol. Cell. Biol. 13, 3522–3529 (1993).

    Article  CAS  Google Scholar 

  8. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  Google Scholar 

  9. Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

    Article  CAS  Google Scholar 

  10. Goldfarb, A.N., Flores, J.P. & Lewandowska, K. Involvement of the E2A basic helix-loop-helix protein in immunoglobulin heavy chain class switching. Mol. Immunol. 33, 947–956 (1996).

    Article  CAS  Google Scholar 

  11. Pan, L., Sato, S., Frederick, J.P., Sun, X.H. & Zhuang, Y. Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol. Cell. Biol. 19, 5969–5980 (1999).

    Article  CAS  Google Scholar 

  12. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  Google Scholar 

  13. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  14. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  Google Scholar 

  15. Bachl, J., Carlson, C., Gray-Schopfer, V., Dessing, M. & Olsson, C. Increased transcription levels induce higher mutation rates in a hypermutating cell line. J. Immunol. 166, 5051–5057 (2001).

    Article  CAS  Google Scholar 

  16. Dudley, D.D. et al. Internal IgH class switch region deletions are position-independent and enhanced by AID expression. Proc. Natl. Acad. Sci. USA 99, 9984–9989 (2002).

    Article  CAS  Google Scholar 

  17. Okazaki, I.M., Kinoshita, K., Muramatsu, M., Yoshikawa, K. & Honjo, T. The AID enzyme induces class switch recombination in fibroblasts. Nature 416, 340–345 (2002).

    Article  CAS  Google Scholar 

  18. Yoshikawa, K. et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002).

    Article  CAS  Google Scholar 

  19. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–104 (2002).

    Article  CAS  Google Scholar 

  20. Nagaoka, H., Muramatsu, M., Yamamura, N., Kinoshita, K. & Honjo, T. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Sμ region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J. Exp. Med. 195, 529–534 (2002).

    Article  CAS  Google Scholar 

  21. Zhao, F., Vilardi, A., Neely, R.J. & Choi, J.K. Promotion of cell cycle progression by basic helix-loop-helix E2A. Mol. Cell. Biol. 21, 6346–6357 (2001).

    Article  CAS  Google Scholar 

  22. Engel, I. & Murre, C. Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc. Natl. Acad. Sci. USA 96, 996–1001 (1999).

    Article  CAS  Google Scholar 

  23. Snapper, C.M., Marcu, K.B. & Zelazowski, P. The immunoglobulin class switch: beyond 'accessibility'. Immunity 6, 217–223 (1997).

    Article  CAS  Google Scholar 

  24. Jung, S., Rajewsky, K. & Radbruch, A. Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984–987 (1993).

    Article  CAS  Google Scholar 

  25. Sakai, E., Bottaro, A., Davidson, L., Sleckman, B.P. & Alt, F.W. Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions. Proc. Natl. Acad. Sci. USA 96, 1526–1531 (1999).

    Article  CAS  Google Scholar 

  26. Seidl, K.J. et al. Position-dependent inhibition of class-switch recombination by PGK-neoR cassettes inserted into the immunoglobulin heavy chain constant region locus. Proc. Natl. Acad. Sci. USA 96, 3000–3005 (1999).

    Article  CAS  Google Scholar 

  27. Bottaro, A. et al. Deletion of the IgH intronic enhancer and associated matrix-attachment regions decreases, but does not abolish, class switching at the μ locus. Int. Immunol. 10, 799–806 (1998).

    Article  CAS  Google Scholar 

  28. Sugai, M. et al. Essential role of Id2 in negative regulation of IgE class switching. Nat. Immunol. 4, 25–30 (2003).

    Article  CAS  Google Scholar 

  29. Bain, G. & Murre, C. The role of E-proteins in B- and T-lymphocyte development. Semin. Immunol. 10, 143–153 (1998).

    Article  CAS  Google Scholar 

  30. Lorenz, M., Jung, S. & Radbruch, A. Switch transcripts in immunoglobulin class switching. Science 267, 1825–1828 (1995).

    Article  CAS  Google Scholar 

  31. Yamanaka, S. et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc. Natl. Acad. Sci. USA 92, 8483–8487 (1995).

    Article  CAS  Google Scholar 

  32. Greeve, J. et al. Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin's lymphomas. Blood, in the press.

  33. Kepler, T.B. & Perelson, A.S. Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol. Today 14, 412–415 (1993).

    Article  CAS  Google Scholar 

  34. Kelsoe, G. Life and death in germinal centers (redux). Immunity 4, 107–111 (1996).

    Article  CAS  Google Scholar 

  35. Shaffer, A.L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  Google Scholar 

  36. Romanow, W.J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000).

    Article  CAS  Google Scholar 

  37. Schlissel, M., Voronova, A. & Baltimore, D. Helix-loop-helix transcription factor E47 activates germ-line immunoglobulin heavy-chain gene transcription and rearrangement in a pre-T-cell line. Genes Dev. 5, 1367–1376 (1991).

    Article  CAS  Google Scholar 

  38. Kenter, A.L., Wuerffel, R., Sen, R., Jamieson, C.E. & Merkulov, G.V. Switch recombination breakpoints occur at nonrandom positions in the Sγ tandem repeat. J. Immunol. 151, 4718–4731 (1993).

    CAS  PubMed  Google Scholar 

  39. Ma, L., Hu, B. & Kenter, A.L. Ig Sγ-specific DNA binding protein SNAP is related to the helix-loop-helix transcription factor E47. Int. Immunol. 9, 1021–1029 (1997).

    Article  CAS  Google Scholar 

  40. Massari, M.E. et al. A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol. Cell 4, 63–73 (1999).

    Article  CAS  Google Scholar 

  41. Massari, M.E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440 (2000).

    Article  CAS  Google Scholar 

  42. Bannister, A.J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  CAS  Google Scholar 

  43. Grant, P.A. et al. A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94, 45–53 (1998).

    Article  CAS  Google Scholar 

  44. Grant, P.A., Schieltz, D., Pray-Grant, M.G., Yates, J.R. 3rd & Workman, J.L. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2, 863–867 (1998).

    Article  CAS  Google Scholar 

  45. Ogryzko, V.V. et al. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94, 35–44 (1998).

    Article  CAS  Google Scholar 

  46. Heemskerk, M.H. et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602 (1997).

    Article  CAS  Google Scholar 

  47. Kinsella, T.M. & Nolan, G.P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).

    Article  CAS  Google Scholar 

  48. Bain, G. et al. Both E12 and E47 allow commitment to the B cell lineage. Immunity 6, 145–154 (1997).

    Article  CAS  Google Scholar 

  49. Kuzin, I.I. et al. Normal isotype switching in B cells lacking the Iμ exon splice donor site: evidence for multiple Iμ-like germline transcripts. J. Immunol. 164, 1451–1457 (2000).

    Article  CAS  Google Scholar 

  50. Agata, Y. et al. Histone acetylation determines the developmentally regulated accessibility for T cell receptor gamma gene recombination. J. Exp. Med. 193, 873–880 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Choi for the E47R vector, and I. Engel and R. Rivera for comments on the manuscript. C.E.S. was supported by a postdoctoral fellowship from the Canadian Institute of Health Research. Y.A. was supported by a fellowship from Japan Science and Technology. This work was supported by grants from the National Institutes of Health to C.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis Murre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayegh, C., Quong, M., Agata, Y. et al. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat Immunol 4, 586–593 (2003). https://doi.org/10.1038/ni923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing