Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes

Abstract

CD4+ T cell priming under T helper type I (TH1) or TH2 conditions gives rise to polarized cytokine gene expression. We found that in these conditions human naive T cells acquired stable histone hyperacetylation at either the Ifng or Il4 promoter. Effector memory T cells showed polarized cytokine gene acetylation patterns in vivo, whereas central memory T cells had hypoacetylated cytokine genes but acquired polarized acetylation and expression after appropriate stimulation. However, hypoacetylation of the nonexpressed cytokine gene did not lead to irreversible silencing because most TH1 and TH2 cells acetylated and expressed the alternative gene when stimulated under opposite TH conditions. Such cytokine flexibility was absent in a subset of TH2 cells that failed to up-regulate T-bet and to express interferon-γ when stimulated under TH1 conditions. Thus, most human CD4+ T cells retain both memory and flexibility of cytokine gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetics of cytokine production and histone H3 acetylation at cytokine gene promoters in nonpolarized, TH1 and TH2 cell lines.
Figure 2: Histone H3 acetylation at cytokine gene promoters in nonpolarized, TH1 and TH2 clones derived from naive T cells in vitro.
Figure 3: Histone acetylation pattern and differentiation potential of central memory T cells.
Figure 4: Correlation between histone acetylation at cytokine gene promoters and cytokine production in freshly isolated CRTh2+ and CCR5+ effector memory T cells.
Figure 5: Maintenance of the histone acetylation pattern and cytokine-producing capacity of effector memory T cells after stimulation in nonpolarizing conditions.
Figure 6: Cytokine flexibility of TH1 and TH2 clones generated in vitro from naive T cells.
Figure 7: Cytokine flexibility of effector memory T cells.
Figure 8: GATA-3 and T-bet as determinants of flexibility in effector memory T cells.

Similar content being viewed by others

References

  1. Paul, W.E. & Seder, R.A. Lymphocyte responses and cytokines. Cell 76, 241–251 (1994).

    Article  CAS  Google Scholar 

  2. Romagnani, S. The Th1/Th2 paradigm. Immunol. Today 18, 263–266 (1997).

    Article  CAS  Google Scholar 

  3. Moser, M. & Murphy, K.M. Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1, 199–205 (2000).

    Article  CAS  Google Scholar 

  4. Sallusto, F., Mackay, C.R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  Google Scholar 

  5. Campbell, J.J. & Butcher, E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    Article  CAS  Google Scholar 

  6. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  7. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors and memory cells. Science 290, 92–97 (2000).

    Article  CAS  Google Scholar 

  8. Kim, C.H., Campbell, D.J. & Butcher, E.C. Nonpolarized memory T cells. Trends Immunol. 22, 527–530 (2001).

    Article  CAS  Google Scholar 

  9. Sad, S. & Mosmann, T.R. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J. Immunol. 153, 3514–3522 (1994).

    CAS  Google Scholar 

  10. Sallusto, F., Lenig, D., Mackay, C.R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  Google Scholar 

  11. Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signalling determines T cell polarization. Eur. J. Immunol. 29, 4092–4101 (1999).

    Article  CAS  Google Scholar 

  12. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  13. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  Google Scholar 

  14. Wang, X. & Mosmann, T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-γ, and can subsequently differentiate into IL-4- or IFN-γ-secreting cells. J. Exp. Med. 194, 1069–1080 (2001).

    Article  CAS  Google Scholar 

  15. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

    Article  CAS  Google Scholar 

  16. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  Google Scholar 

  17. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  Google Scholar 

  18. Hislop, A.D., Annels, N.E., Gudgeon, N.H., Leese, A.M. & Rickinson, A.B. Epitope-specific evolution of human CD8+ T cell responses from primary to persistent phases of Epstein-Barr virus infection. J. Exp. Med. 195, 893–905 (2002).

    Article  CAS  Google Scholar 

  19. Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494 (2000).

    Article  CAS  Google Scholar 

  20. Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  21. Reiner, S.L. Helper T cell differentiation, inside and out. Curr. Opin. Immunol. 13, 351–355 (2001).

    Article  CAS  Google Scholar 

  22. Ho, I.C. & Glimcher, L.H. Transcription: tantalizing times for T cells. Cell 109 (Suppl.) 109–120 (2002).

    Article  Google Scholar 

  23. Rao, A. & Avni, O. Molecular aspects of T-cell differentiation. Br. Med. Bull. 56, 969–984 (2000).

    Article  CAS  Google Scholar 

  24. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  25. Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  Google Scholar 

  26. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 13, 549–557 (2002).

    Article  Google Scholar 

  27. Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  Google Scholar 

  28. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  Google Scholar 

  29. Ho, I.C., Hodge, M.R., Rooney, J.W. & Glimcher, L.H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983 (1996).

    Article  CAS  Google Scholar 

  30. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  Google Scholar 

  31. Takemoto, N. et al. Cutting edge: chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for Th2-specific cytokine gene cluster. J. Immunol. 165, 6687–6691 (2000).

    Article  CAS  Google Scholar 

  32. Lee, G.R., Fields, P.E. & Flavell, R.A. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14, 447–459 (2001).

    Article  CAS  Google Scholar 

  33. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  Google Scholar 

  34. Mohrs, M. et al. Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat. Immunol. 2, 842–847 (2001).

    Article  CAS  Google Scholar 

  35. Kim, J.I., Ho, I.C., Grusby, M.J. & Glimcher, L.H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745–751 (1999).

    Article  CAS  Google Scholar 

  36. Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  Google Scholar 

  37. Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831 (1997).

    Article  CAS  Google Scholar 

  38. Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  Google Scholar 

  39. Paliard, X. et al. Simultaneous production of IL-2, IL-4, and IFN-γ by activated human CD4+ and CD8+ T cell clones. J. Immunol. 141, 849–855 (1988).

    CAS  PubMed  Google Scholar 

  40. Openshaw, P. et al. Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J. Exp. Med. 182, 1357–1367 (1995).

    Article  CAS  Google Scholar 

  41. Smale, S.T. & Fisher, A.G. Chromatin structure and gene regulation in the immune system. Annu. Rev. Immunol. 20, 427–462 (2002).

    Article  CAS  Google Scholar 

  42. Tse, C., Sera, T., Wolffe, A.P. & Hansen, J.C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell Biol. 18, 4629–4638 (1998).

    Article  CAS  Google Scholar 

  43. Lee, D.Y., Hayes, J.J., Pruss, D. & Wolffe, A.P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84 (1993).

    Article  CAS  Google Scholar 

  44. Vettese-Dadey, M. et al. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15, 2508–2518 (1996).

    Article  CAS  Google Scholar 

  45. Vitolo, J.M., Thiriet, C. & Hayes, J.J. The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol. Cell Biol. 20, 2167–2175 (2000).

    Article  CAS  Google Scholar 

  46. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  Google Scholar 

  47. Jacobson, R.H., Ladurner, A.G., King, D.S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  Google Scholar 

  48. Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. & Allshire, R.C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032 (1997).

    Article  CAS  Google Scholar 

  49. Cavalli, G. & Paro, R. Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286, 955–958 (1999).

    Article  CAS  Google Scholar 

  50. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 10, 643–651 (2002).

    Article  Google Scholar 

  51. Fields, P.E., Kim, S.T. & Flavell, R.A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-γ loci accompany Th1/Th2 differentiation. J. Immunol. 169, 647–650 (2002).

    Article  CAS  Google Scholar 

  52. Loetscher, P. et al. CCR5 is characteristic of Th1 lymphocytes. Nature 391, 344–345 (1998).

    Article  CAS  Google Scholar 

  53. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    Article  CAS  Google Scholar 

  54. Nagata, K. et al. Selective expression of a novel surface molecule by human Th2 cells in vivo. J. Immunol. 162, 1278–1286 (1999).

    CAS  PubMed  Google Scholar 

  55. Cosmi, L. et al. CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur. J. Immunol. 30, 2972–2979 (2000).

    Article  CAS  Google Scholar 

  56. Noben-Trauth, N., Hu-Li, J. & Paul, W.E. IL-4 secreted from individual naive CD4+ T cells acts in an autocrine manner to induce Th2 differentiation. Eur. J. Immunol. 32, 1428–1433 (2002).

    Article  CAS  Google Scholar 

  57. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  58. Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

    Article  CAS  Google Scholar 

  59. Smits, H.H. et al. IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur. J. Immunol. 31, 1055–1065 (2001).

    Article  CAS  Google Scholar 

  60. Iwasaki, M. et al. Association of a new-type prostaglandin D2 receptor CRTH2 with circulating T helper 2 cells in patients with atopic dermatitis. J. Invest. Derm. 119, 609–616 (2002).

    Article  CAS  Google Scholar 

  61. Annunziato, F. et al. Reversal of human allergen-specific CRTH2+ TH2 cells by IL-12 or the PS-DSP30 oligodeoxynucleotide. J. Allergy Clin. Immunol. 108, 815–821 (2001).

    Article  CAS  Google Scholar 

  62. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  Google Scholar 

  63. Kim, C.H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Jarrossay for cell sorting; members of Natoli's lab and of Amaxa Biosystems GmbH for help with transfection experiments; and A. Gett and C. Mackay for critical reading and suggestions. Supported, in part, by the European Community (contract number QLK2-CT-201-01205); the San Salvatore Foundation (M.M.) and the Helmut Horten Foundation (A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Sallusto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Web Fig. 1.

Increased histone acetylation and cytokine production upon secondary stimulation. TH1 and TH2 cell lines, which were stimulated once or twice in polarizing conditions, were analyzed for histone acetylation (a) and cytokine production upon PMA-iono stimulation (b). (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messi, M., Giacchetto, I., Nagata, K. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat Immunol 4, 78–86 (2003). https://doi.org/10.1038/ni872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing