Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis

Abstract

Interaction between dendritic cells (DCs) and T cells is essential for the generation of cell-mediated immunity. Here we show that DCs from mice with chronic Leishmania donovani infection fail to migrate from the marginal zone to the periarteriolar region of the spleen. Stromal cells were fewer, which was associated with loss of CCL21 and CCL19 expression. The residual stromal cells and endothelium produced sufficient CCL21 to direct the migration of DCs transferred from naïve mice. However, DCs from infected mice had impaired migration both in naïve recipients and in vitro, in response to CCL21 and CCL19. Defective localization was attributable to tumor necrosis factor-α–dependent, interleukin 10–mediated inhibition of CCR7 expression. Effective immunotherapy was achieved with CCR7-expressing DCs, without the need to identify protective Leishmania antigens. Thus defective DC migration plays a major role in the pathogenesis of this disease and the immunosuppression is mediated, at least in part, through the spatial segregation of DCs and T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in DC distribution during L. donovani infection.
Figure 2: gp38+ stromal cells, CCL21 and CCL19 expression and T zone reticular fibers during chronic infection.
Figure 3: Stromal cells and CCL21 expression in the absence of TNF-α.
Figure 4: Migration of splenic DCs from L. donovani–infected mice.
Figure 5: Chemotactic responses of DCs to CCR7 ligands.
Figure 6: CCR7 expression on DCs from infected mice.
Figure 7: Role of TNF-α and IL-10 in regulating DC migration.
Figure 8: Immunotherapy with CCR7+ DC.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins, M.K. et al. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Cyster, J.G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Kellermann, S.A., Hudak, S., Oldham, E.R., Liu, Y.J. & McEvoy, L.M. The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3β are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J. Immunol. 162, 3859–3864 (1999).

    CAS  PubMed  Google Scholar 

  6. Luther, S.A., Tang, H.L., Hyman, P.L., Farr, A.G. & Cyster, J.G. Co-expression of the chemokines ELC and SLC by T cell zone stromal cells and deletion of the ELC gene in the plt/plt mice. Proc. Natl. Acad. Sci. USA 97, 12694–12699 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Förster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  PubMed  Google Scholar 

  8. Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ngo, V.N. et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ngo, V.N., Cornall, R.J. & Cyster, J.G. Splenic T zone development is B cell dependent. J. Exp. Med. 194, 1649–1660 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Engwerda, C.R. et al. Remodelling of the splenic marginal zone macrophages following during Leishmania donovani infection by TNF-α. Am. J. Pathol. 161, 429–437 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Odermatt, B., Eppler, M., Leist, T.P., Hengartner, H. & Zinkernagel, R.M. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure. Proc. Natl. Acad. Sci. USA. 88, 8252–8256 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ho, M., Koech, D.K., Iha, D.W. & Bryceson, A.D. Immunosuppression in Kenyan visceral leishmaniasis. Clin. Exp. Immunol. 51, 207–214 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Engwerda, C.R. & Kaye, P.M. Organ-specific immune responses associated with infectious diseases. Immunol. Today 21, 73–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Murray, H.W. et al. Acquired resistance and granuloma formation in experimental visceral leishmaniasis. Differential T cell and lymphokine roles in initial versus established immunity. J. Immunol. 148, 1858–1863 (1992).

    CAS  PubMed  Google Scholar 

  16. Engwerda, C.R., Murphy, M.L., Cotterell, S.E., Smelt, S.C. & Kaye, P.M. Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. Eur. J. Immunol. 28, 669–680 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Smelt, S.C., Engwerda, C.R., McCrossen, M. & Kaye, P.M. Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J. Immunol. 158, 3813–3821 (1997).

    CAS  PubMed  Google Scholar 

  18. Gomes, N.A., Gattass, C.R., Barreto-De-Souza, V., Wilson, M.E. & DosReis, G.A. TGF-β mediates CTLA-4 suppression of cellular immunity in murine kalaazar. J. Immunol. 164, 2001–2008 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Seiler, P. et al. Crucial role of marginal zone macrophages and marginal zone metalophils in the clearance of lymphocytic choriomeningitis virus infection. Eur. J. Immunol. 27, 2626–2633 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Steinman, R.M., Pack, M. & Inaba, K. Dendritic cells in the T-cell areas of lymphoid organs. Immunol. Rev. 156, 25–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Farr, A.G. et al. Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J. Exp. Med. 176, 1477–1482 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Buckley, C.D. et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22, 199–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Gorak, P.M., Engwerda, C.R. & Kaye, P.M. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28, 687–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Vaday, G.G. et al. Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix. J. Leukoc. Biol. 69, 885–892 (2001).

    CAS  PubMed  Google Scholar 

  25. Körner, H. et al. Distinct roles for lymphotoxin-α and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue. Eur. J. Immunol. 27, 2600–2609 (1997).

    Article  PubMed  Google Scholar 

  26. Sheehan, K.C., Ruddle, N.H. & Schreiber, R.D. Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J. Immunol. 142, 3884–3893 (1989).

    CAS  PubMed  Google Scholar 

  27. Austyn, J.M., Kupiec-Weglinski, J.W., Hankins, D.F. & Morris, P.J. Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone. J. Exp. Med. 167, 646–651 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, J.L. & Murphy, P.M. Cloning and differential tissue-specific expression of three mouse β chemokine receptor-like genes, including the gene for a functional macrophage inflammatory protein-1α receptor. J. Biol. Chem. 270, 17494–17501 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Boring, L. et al. Molecular cloning and functional expression of murine JE (monocyte chemoattractant protein 1) and murine macrophage inflammatory protein 1α receptors: evidence for two closely linked C-C chemokine receptors on chromosome 9. J. Biol. Chem. 271, 7551–7558 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bardi, G., Lipp, M., Baggiolini, M. & Loetscher, P. The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur. J. Immunol. 31, 3291–3297 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol 29, 1617–1625 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Engwerda, C.R., Smelt, S.C. & Kaye, P.M. An in vivo analysis of cytokine production during Leishmania donovani infection in scid mice. Exp. Parasitol. 84, 195–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nature Immunol. 1, 387–391 (2000).

    Article  CAS  Google Scholar 

  35. Takayama, T. et al. Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J. Immunol. 166, 7136–7143 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. O'Farrell, A.M., Liu, Y., Moore, K.W. & Mui, A.L. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J. 17, 1006–1018 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Dieu, M.C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sozzani, S. et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J. Immunol. 161, 1083–1086 (1998).

    CAS  PubMed  Google Scholar 

  39. Kaye, P.M. Acquisition of cell-mediated immunity to Leishmania. I. Primary T-cell activation detected by IL-2 receptor expression. Immunology 61, 345–349 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Alexander, C.E., Kaye, P.M. & Engwerda, C.R. CD95 is required for the early control of parasite burden in the liver of Leishmania donovani -infected mice. Eur. J. Immunol. 31, 1199–1210 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Nickol, A.D. & Bonventre, P.F. Visceral leishmaniasis in congenic mice of susceptible and resistant phenotypes: T-lymphocyte-mediated immunosuppression. Infect. Immun. 50, 169–174 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu, Y.X. & Chaplin, D.D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Weiss, L. Mechanisms of splenic control of murine malaria: cellular reactions of the spleen in lethal (strain 17XL) Plasmodium yoelii malaria in BALB/c mice, and the consequences of pre-infective splenectomy. Am. J. Trop. Med. Hyg. 41, 144–160 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Conlan, J.W. & North, R.J. Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J. Exp. Med. 179, 259–268 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Mercer, J.A., Wiley, C.A. & Spector, D.H. Pathogenesis of murine cytomegalovirus infection: identification of infected cells in the spleen during acute and latent infections. J. Virol. 62, 987–997 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bogdan, C. et al. Fibroblasts as host cells in latent leishmaniosis. J. Exp. Med. 191, 2121–2130 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Luster, A.D. The role of chemokines in linking innate and adaptive immunity. Curr. Opin. Immunol. 14, 129–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Cotterell, S.E., Engwerda, C.R. & Kaye, P.M. Enhanced hematopoietic activity accompanies parasite expansion in the spleen and bone marrow of mice infected with Leishmania donovani. Infect. Immun. 68, 1840–1848 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hoffmann, K.F., Cheever, A.W & Wynn, T.A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164, 6406–6416 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Smith, D., Hansch, H., Bancroft, G. & Ehlers, S. T-cell-independent granuloma formation in response to Mycobacterium avium: role of tumour necrosis factor-α and interferon-γ. Immunology 92, 413–421 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Murray, H.W., Jungbluth, A., Ritter, E., Montelibano, C. & Marino, M.W. Visceral leishmaniasis in mice devoid of tumor necrosis factor and response to treatment. Infect. Immun. 68, 6289–6293 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Murphy, M.L., Wille, U., Villegas, E.N., Hunter, C.A. & Farrell, J.P. IL-10 mediates susceptibility to Leishmania donovani infection. Eur. J. Immunol. 31, 2848–2856 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Basu, A., Chankrabarti, G., Saha, A. & Bandyopadhyay, S. Modulation of CD11c+ splenic dendritic cell function in murine visceral leishmaniasis: correlation with parasite replication in the spleen. Immunology 99, 305–313 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hunter, M.G. et al. BB-10010: an active variant of human macrophage inflammatory protein-1 α with improved pharmaceutical properties. Blood 86, 4400–4408 (1995).

    CAS  PubMed  Google Scholar 

  56. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Meth. 223, 77–92 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank staff at the LSHTM Biological Services Unit for assistance in the breeding and maintenance of mouse colonies. We also thank A. Sher and J. Aliberti for comments on this manuscript. Supported by the Wellcome Trust and the British Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Kaye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ato, M., Stäger, S., Engwerda, C. et al. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol 3, 1185–1191 (2002). https://doi.org/10.1038/ni861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing