Diversity of receptors binding HIV on dendritic cell subsets


The ability of HIV-1 to use dendritic cells (DCs) for transport and to transfer virus to activated T cells in the lymph node may be crucial in early HIV-1 pathogenesis. We have characterized primary DCs for the receptors involved in viral envelope attachment and observed that C-type lectin receptor (CLR) binding was predominant in skin DCs, whereas binding to emigrating and tonsil DCs was CD4-dependent. No one CLR was solely responsible for envelope binding on all skin DC subsets. DC-SIGN (DC-specific ICAM-3–grabbing nonintegrin) was only expressed by CD14+CDlalo dermal DCs. The mannose receptor was expressed by CD1ahi and CD14+CDlalo dermal DCs, and langerin was expressed by Langerhans cells. The diversity of CLRs able to bind HIV-1 in skin DCs may reflect their ability to bind a range of microbial glycoproteins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CD4 and DC-SIGN expression by MDDCs and tissue DCs after collagenase treatment.
Figure 2: Isolation and purification of DC populations and identification by standard markers.
Figure 3: Two patterns of HIV gp120 binding to CD4 and CLRs on multiple DC subsets.
Figure 4: Quantification of HIV gp120 binding on MDDCs, MDLCs and immature and emigrant skin DC subsets.
Figure 5: HIV gp120 binding and MCLR phenotypes of epidermal LC and dermal DC subsets.
Figure 6: HIV gp120 binding on MCLR transfectants.
Figure 7: Expression of CLRs on DC subsets in sections of skin.
Figure 8: Mechanism of entry of infectious HIV into MDDCs or blood DCs.

Accession codes




  1. 1

    Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Cameron, P.U. et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257, 383–387 (1992).

    CAS  Article  Google Scholar 

  3. 3

    Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Pinchuk, L.M., Polacino, P.S., Agy, M.B., Klaus, S.J. & Clark, E.A. The role of CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection. Immunity 1, 317–325 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Kawamura, T. et al. Candidate microbicides block HIV-1 infection of human immature langerhans cells within epithelial tissue explants. J. Exp. Med. 192, 1491–1500 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Reece, J.C. et al. HIV-1 selection by epidermal dendritic cells during transmission across human skin. J. Exp. Med. 187, 1623–1631 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Hu, J., Gardner, M.B. & Miller, C.J. Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J. Virol. 74, 6087–6095 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Spira, A.I. et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J. Exp. Med. 183, 215–225 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Stahl-Hennig, C. et al. Rapid infection of oral mucosal-associated lymphoid tissue with simian immunodeficiency virus. Science 285, 1261–1265 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Masurier, C. et al. Dendritic cells route human immunodeficiency virus to lymph nodes after vaginal or intravenous administration to mice. J. Virol. 72, 7822–7829 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Berger, E.A. et al. A new classification for HIV-1. Nature 391, 240 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Blauvelt, A. et al. Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J. Clin. Invest. 100, 2043–2053 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Dezutter-Dambuyant, C. et al. Interaction of human epidermal Langerhans cells with HIV-1 viral envelope proteins (gp 120 and gp 160s) involves a receptor-mediated endocytosis independent of the CD4 T4A epitope. J. Dermatol. 18, 377–392 (1991).

    CAS  Article  Google Scholar 

  15. 15

    Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Turville, S.G. et al. HIV gp120 receptors on human dendritic cells. Blood 98, 2482–2488 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Turville, S.G. et al. Bitter-sweet symphony: defining the role of dendritic cell gp120 receptors in HIV infection. J. Clin. Virol. 22, 229–239 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Curtis, B.M., Scharnowske, S. & Watson, A.J. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA 89, 8356–8360 (1992).

    CAS  Article  Google Scholar 

  19. 19

    Lenz, A., Heine, M., Schuler, G. & Romani, N. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J. Clin. Invest. 92, 2587–2596 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Nestle, F.O., Zheng, X.G., Thompson, C.B., Turka, L.A. & Nickoloff, B.J. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol. 151, 6535–6545 (1993).

    CAS  PubMed  Google Scholar 

  21. 21

    Valladeau, J. et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000).

    CAS  Article  Google Scholar 

  22. 22

    McLellan, A.D., Heiser, A., Sorg, R.V., Fearnley, D.B. & Hart, D.N. Dermal dendritic cells associated with T lymphocytes in normal human skin display an activated phenotype. J. Invest. Dermatol. 111, 841–849 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Hladik, F. et al. Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract. J. Virol. 73, 5833–5842 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Geijtenbeek, T.B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 100, 575–585 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Grassi, F. et al. Monocyte-derived dendritic cells have a phenotype comparable to that of dermal dendritic cells and display ultrastructural granules distinct from Birbeck granules. J. Leukoc. Biol. 64, 484–493 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Hart, D.N. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90, 3245–3287 (1997).

    CAS  PubMed  Google Scholar 

  27. 27

    Romani, N. et al. Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells. J. Exp. Med. 169, 1169–1178 (1989).

    CAS  Article  Google Scholar 

  28. 28

    Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Dezutter-Dambuyant, C. In vivo and in vitro infection of human Langerhans cells by HIV-1. Adv. Exp. Med. Biol. 378, 447–451 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Pohlmann, S. et al. DC-SIGN interactions with human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus. J. Virol. 75, 4664–4672 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Lee, B. et al. cis Expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor. J. Virol. 75, 12028–12038 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Soilleux, E.J., Barten, R. & Trowsdale, J. DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. J. Immunol. 165, 2937–2942 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Soilleux, E.J. & Coleman, N. Langerhans cells and the cells of Langerhans cell histiocytosis do not express DC-SIGN. Blood 98, 1987–1988 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Soilleux, E.J. et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 71, 445–457 (2002).

    CAS  PubMed  Google Scholar 

  35. 35

    Mukhtar, M. et al. Primary isolated human brain microvascular endothelial cells express diverse HIV/SIV-associated chemokine coreceptors and DC-SIGN and L-SIGN. Virology 297, 78–88 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Kato, M. et al. Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int. Immunol. 12, 1511–1519 (2000).

    CAS  Article  Google Scholar 

  37. 37

    MacDonald, K.P.A. et al. Peripheral blood dendritic cell heterogeneity. Blood doi:10:1182/blood-2002-11-0097 (in the press, 2002).

  38. 38

    MacDonald, K.P.A., Munster, D.J., Clark, G.J., Vuckovic, S. & Hart, D.N.J. in Leucocyte Typing VII (ed. Mason, D.) edn. 7 (Oxford University Press, Oxford, 2002).

    Google Scholar 

  39. 39

    Cameron, P., Pope, M., Granelli-Piperno, A. & Steinman, R.M. Dendritic cells and the replication of HIV-1. J. Leukoc. Biol. 59, 158–171 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Granelli-Piperno, A., Finkel, V., Delgado, E. & Steinman, R.M. Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells. Curr. Biol. 9, 21–29 (1999).

    CAS  Article  Google Scholar 

  41. 41

    Pope, M., Gezelter, S., Gallo, N., Hoffman, L. & Steinman, R.M. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J. Exp. Med. 182, 2045–2056 (1995).

    CAS  Article  Google Scholar 

  42. 42

    Mahnke, K. et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell. Biol. 151, 673–684 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Engering, A. et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol. 168, 2118–2126 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Stent, G. et al. Heterogeneity of freshly isolated human tonsil dendritic cells demonstrated by intracellular markers, phagocytosis, and membrane dye transfer. Cytometry 48, 167–176 (2002).

    Article  Google Scholar 

  45. 45

    Chakrabarti, S., Sisler, J.R. & Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23, 1094–1097 (1997).

    CAS  Article  Google Scholar 

  46. 46

    Hoffman, T.L. et al. Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. Proc. Natl. Acad. Sci. USA 96, 6359–6364 (1999).

    CAS  Article  Google Scholar 

  47. 47

    Pohlmann, S. et al. DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc. Natl. Acad. Sci. USA 98, 2670–2675 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Taylor, M.E. & Drickamer, K. Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor. J. Biol. Chem. 268, 399–404 (1993).

    CAS  PubMed  Google Scholar 

  49. 49

    Lewin, S.R. et al. Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J. Virol. 73, 6099–6103 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Endres, M.J. et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87, 745–756 (1996).

    CAS  Article  Google Scholar 

Download references


Supported by the Australian National Centre for HIV Virology Research (A. L. C.); an Australian Postgraduate Award (to S. T.); an Australian National Health and Medical Research Council grant (to P. U. C.); an NIH MSTP grant (to P. U. C.); a Wellcome trust and ANZ trustees grant (to P. U. C.); the Deutsche Forschungsgemeinschaft (S. P.); NIH grants R0140880 and R0135383 (to R. D.); a Burroughs Wellcome Fund translational research award (to R. W. D.); and an Elizabeth Glaser Scientist award from the Pediatric AIDS Foundation (to R. W. D.). Thanks to R. Berkowicz for tonsils, the staff of the VPSU for normal skin, to M. Taylor and D. Hart for cells and reagents and C. Wolczak for processing the manuscript.

Author information



Corresponding author

Correspondence to Anthony L. Cunningham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turville, S., Cameron, P., Handley, A. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3, 975–983 (2002). https://doi.org/10.1038/ni841

Download citation

Further reading