Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CARMA1 is a critical lipid raft–associated regulator of TCR-induced NF-κB activation


CARMA1 is a lymphocyte-specific member of the membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins, which coordinate signaling pathways emanating from the plasma membrane. CARMA1 interacts with Bcl10 via its caspase-recruitment domain (CARD). Here we investigated the role of CARMA1 in T cell activation and found that T cell receptor (TCR) stimulation induced a physical association of CARMA1 with the TCR and Bcl10. We found that CARMA1 was constitutively associated with lipid rafts, whereas cytoplasmic Bcl10 translocated into lipid rafts upon TCR engagement. A CARMA1 mutant, defective for Bcl10 binding, had a dominant-negative (DN) effect on TCR-induced NF-κB activation and IL-2 production and on the c-Jun NH2-terminal kinase (Jnk) pathway when the TCR was coengaged with CD28. Together, our data show that CARMA1 is a critical lipid raft–associated regulator of TCR-induced NF-κB activation and CD28 costimulation–dependent Jnk activation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Association of CARMA1 with the TCR complex and with Bcl10 after T cell activation.
Figure 2: Colocalization of CARMA1 and Bcl10 with the TCR after CD3-aggregation.
Figure 3: Differential lipid raft localization of CARMA1 and Bcl10 in resting and CD3-triggered T cells.
Figure 4: Inhibitory effect of CARD-mutated CARMA1 on TCR-mediated NF-κB activation and IL-2 production.
Figure 5: Effects of DN CARMA1 on TCR-triggered signaling pathways.
Figure 6: Effects of DN CARMA1 on PMA + ionomycin and CD28 costimulation–induced signaling pathways.


  1. 1

    Kane, L.P., Lin, J. & Weiss, A. Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 12, 242–249 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Gerondakis, S., Grumont, R., Rourke, I. & Grossmann, M. The regulation and roles of Rel/NF-κB transcription factors during lymphocyte activation. Curr. Opin. Immunol. 10, 353–359 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Cantrell, D. T cell antigen receptor signal transduction pathways. Annu. Rev. Immunol. 14, 259–274 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Janes, P.W., Ley, S.C., Magee, A.I. & Kabouridis, P.S. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin. Immunol. 12, 23–34 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Resh, M.D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Khoshnan, A., Bae, D., Tindell, C.A. & Nel, A.E. The physical association of protein kinase Cθ with a lipid raft- associated inhibitor of κB factor kinase (IKK) complex plays a role in the activation of the NF-κB cascade by TCR and CD28. J. Immunol. 165, 6933–6940 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Bi, K. et al. Antigen-induced translocation of PKC-θ to membrane rafts is required for T cell activation. Nature Immunol. 2, 556–563 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Bi, K. & Altman, A. Membrane lipid microdomains and the role of PKCθ in T cell activation. Semin. Immunol. 13, 139–146 (2001).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Willis, T.G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96, 35–45 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Zhang, Q. et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nature Genet. 22, 63–68 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Gaide, O. et al. CARMA1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-κB activation. FEBS Lett. 496, 121–127 (2001).

    CAS  Article  Google Scholar 

  17. 17

    McAllister-Lucas, L.M. et al. Bimp1, a MAGUK family member linking protein kinase C activation to Bcl10-mediated NF-κB induction. J. Biol. Chem. 276, 30589–30597 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Bertin, J. et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane- associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-κB. J. Biol. Chem. 276, 11877–11882 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Wang, L. et al. Card10 is a novel caspase recruitment domain/membrane-associated guanylate kinase family member that interacts with BCL10 and activates NF-κB. J. Biol. Chem. 276, 21405–21409 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Fanning, A.S. & Anderson, J.M. Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 11, 432–439 (1999).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Dimitratos, S.D., Woods, D.F., Stathakis, D.G. & Bryant, P.J. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Bioessays 21, 912–921 (1999).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Ponting, C.P., Phillips, C., Davies, K.E. & Blake, D.J. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19, 469–479 (1997).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Mayer, B.J. SH3 domains: complexity in moderation. J. Cell. Sci. 114, 1253–1263 (2001).

    CAS  PubMed  Google Scholar 

  24. 24

    Thome, M. et al. Equine herpesvirus protein E10 induces membrane recruitment and phosphorylation of its cellular homologue, Bcl10. J. Cell. Biol. 152, 1115–1122 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Hsi, E.D. et al. T cell activation induces rapid tyrosine phosphorylation of a limited number of cellular substrates. J. Biol. Chem. 264, 10836–10842 (1989).

    CAS  PubMed  Google Scholar 

  26. 26

    Chan, A.C., Iwashima, M., Turck, C.W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71, 649–662 (1992).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Janes, P.W., Ley, S.C. & Magee, A.I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Leupin, O., Zaru, R., Laroche, T., Muller, S. & Valitutti, S. Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol. 10, 277–280 (2000).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Legler, D.F., Doucey, M.A., Cerottini, J.C., Bron, C. & Luescher, I.F. Selective inhibition of CTL activation by a dipalmitoyl-phospholipid that prevents the recruitment of signaling molecules to lipid rafts. FASEB J. 15, 1601–1603 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Harder, T. & Simons, K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol. 29, 556–562 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Doucey, M.A. et al. CTL activation is induced by cross-linking of TCR/MHC-peptide- CD8/p56lck adducts in rafts. Eur. J. Immunol. 31, 1561–1570 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Ilangumaran, S., He, H.T. & Hoessli, D.C. Microdomains in lymphocyte signalling: beyond GPI-anchored proteins. Immunol. Today 21, 2–7 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Bordier, C. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256, 1604–1607 (1981).

    CAS  Google Scholar 

  34. 34

    Schneider, P. et al. Characterization of two receptors for TRAIL. FEBS Lett. 416, 329–334 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Kabouridis, P.S., Magee, A.I. & Ley, S.C. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 16, 4983–4998 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Jain, J., Loh, C. & Rao, A. Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol. 7, 333–342 (1995).

    CAS  Article  Google Scholar 

  37. 37

    Su, B. et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77, 727–736 (1994).

    Article  Google Scholar 

  38. 38

    Bradley, J.R. & Pober, J.S. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20, 6482–6491 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Devin, A. et al. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12, 419–429 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Thome, M. et al. Equine herpesvirus-2 E10 gene product, but not its cellular homologue, activates NF-κB transcription factor and c-Jun N-terminal kinase. J. Biol. Chem. 274, 9962–9968 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Yoneda, T. et al. Regulatory mechanisms of TRAF2-mediated signal transduction by Bcl10, a MALT lymphoma-associated protein. J. Biol. Chem. 275, 11114–11120 (2000).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Uren, A.G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).

    CAS  Google Scholar 

  44. 44

    Dierlamm, J. et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21)p6ssociated with mucosa- associated lymphoid tissue lymphomas. Blood 93, 3601–3609 (1999).

    CAS  PubMed  Google Scholar 

  45. 45

    Akagi, T. et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 18, 5785–5794 (1999).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Morgan, J.A. et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res. 59, 6205–6213 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Lucas, P.C. et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-κ B signaling pathway. J. Biol. Chem. 276, 19012–19019 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Ghaffari-Tabrizi, N. et al. Protein kinase Cθ, a selective upstream regulator of JNK/SAPK and IL-2 promoter activation in Jurkat T cells. Eur. J. Immunol. 29, 132–142 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Alegre, M.L., Frauwirth, K.A. & Thompson, C.B. T-cell regulation by CD28 and CTLA-4. Nature Rev. Immunol. 1, 220–228 (2001).

    CAS  Article  Google Scholar 

  50. 50

    Penna, D. et al. Degradation of ZAP-70 after antigenic stimulation in human T lymphocytes: role of calpain proteolytic pathway. J. Immunol. 163, 50–56 (1999).

    CAS  PubMed  Google Scholar 

Download references


Supported by grants from the Swiss Cancer League (to M. T. and J. T.) and by the Swiss Academy of Medical Sciences (to O. G). C. B. and D. L. were supported by grants from the Swiss National Science Foundation and the Giorgi Cavaglieri Foundation; S. V. was supported by grants from La Ligue contre le Cancer, La Fondation pour la Recherche Médicale and the Giorgio Cavaglieri Foundation. We thank S. Levrand for technical assistance, P. Zaech for help with FACS analysis and K. Burns, F. Martinon and M. Thurau for critical review of the manuscript.

Author information



Corresponding author

Correspondence to Margot Thome.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaide, O., Favier, B., Legler, D. et al. CARMA1 is a critical lipid raft–associated regulator of TCR-induced NF-κB activation. Nat Immunol 3, 836–843 (2002).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing