Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prolonged IFN-γ–producing NKT response induced with α-galactosylceramide–loaded DCs

This article has been updated

Abstract

Natural killer T (NKT) lymphocytes mediate a rapid reaction to the glycolipid drug α-galactosylceramide (αGalCer), which triggers release of large amounts of cytokines into the serum within 12 h, starting with interleukin 4 (IL-4). When αGalCer is administered to mice on dendritic cells (DCs) instead, the response is more prolonged (>4 days) and marked by a large expansion in IFN-γ–producing NKT cells as well as greater resistance to metastases of the B16 melanoma. Nevertheless, DCs from mice given free αGalCer are able to induce strong IFN-γ–producing NKT responses when transferred to naïve mice, but not when transferred to αGalCer-treated recipients. In the latter, the NKT cells are anergized and can respond to glycolipid only in the presence of supplemental IL-2. Therefore, when αGalCer is selectively targeted to DCs, mice develop a stronger, more prolonged and effector type of NKT response, but this response can be blocked by the induction of anergy after presentation of αGalCer on other cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses to αGalCer administered as a free drug or on DCs.
Figure 2: Assays for IFN-γ– and IL-4–producing NKT cells to DCs pulsed with αGalCer.
Figure 3: The dynamic nature of NKT cell responses to DC-αGalCer and αGalCer.
Figure 4: Prolonged IFN-γ–producing NKT response in mice vaccinated with DCs.
Figure 5: IL-2 secretion by DCs plays a role in activating NKT cells.
Figure 6: DC-αGalCer immunization protects against B16 melanoma.
Figure 7: Inhibition of DC-induced NKT responses by αGalCer on other cells.

Similar content being viewed by others

Change history

  • 26 August 2002

    Acknowledgments were updated with note and PDF was appended with note.

References

  1. Bendelac, A., Rivera, M.N., Park, S.-H. & Roark, J.H. Mouse CD1-specific NK1 T cells. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. MacDonald, H.R. CD1d-glycolipid Tetramers. A new tool to monitor natural killer T cells in health and disease. J. Exp. Med. 192, 15–20 (2000).

    Article  Google Scholar 

  3. Godfrey, D.I., Hammond, K.J., Poulton, L.D., Smyth, M.J. & Baxter, A.G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med. 7, 1052–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nature Med. 7, 1057–1062 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, B., Geng, Y.B. & Wang, C.R. CD1-restricted NKT cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med. 194, 313–320 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pal, E. et al. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα14 NK T cells. J. Immunol. 166, 662–668 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Jahng, A.W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1789–1799 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh, A.K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawano, T. et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc. Natl. Acad. Sci. USA 95, 5690–5693 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Toura, I. et al. Inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J. Immunol. 163, 2387–2391 (1999).

    CAS  PubMed  Google Scholar 

  13. Shin, T. et al. Inhibition of tumor metastasis by adoptive transfer of IL-12-activated Vα14 NKT cells. Int. J. Cancer 91, 523–528 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nakagawa, R. et al. Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by α-galactosylceramide in mice. J. Immunol. 166, 6578–6584 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Smyth, M.J. et al. Sequential production of interferon-γ by NK1. 1+ T cells and natural killer cells is essential for the antimetastatic effect of α- galactosylceramide. Blood 99, 1259–1266 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Smyth, M.J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smyth, M.J., Taniguchi, M. & Street, S.E. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165, 2665–2670 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Takeda, K. et al. Relative contribution of NK and NKT cells to the anti-metastatic activities of IL-12. Int. Immunol. 12, 909–914 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Aseguinolaza, G. et al. α-galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria. Proc. Natl. Acad. Sci. USA 97, 8461–8466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kakimi, K., Guidotti, L.G., Koezuka, Y. & Chisari, F.V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 192, 921–930 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishikawa, H. et al. CD4+ Vα14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int. Immunol. 12, 1267–1274 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Grant, E.P. et al. Molecular recognition of lipid antigens by T cell receptors. J. Exp. Med. 189, 195–205 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol. 161, 3271–3281 (1998).

    CAS  PubMed  Google Scholar 

  25. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T Cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spada, F.M., Koezuka, Y. & Porcelli, S.A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsuda, J.L. & Kronenberg, M. Presentation of self and microbial lipids by CD1 molecules. Curr. Opin. Immunol. 13, 19–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Morita, M. et al. Structure-activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176 (1995).

  29. Zeng, Z.-H. et al. Crystal structure of mouse CD1: an MHC- like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1904 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomura, M. et al. A novel function of Vα14+ CD4+ NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J. Immunol. 163, 93–101 (1999).

    CAS  PubMed  Google Scholar 

  33. Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189, 1121–1128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, O.O. et al. CD1d on myeloid dendritic cells stimulates cytokine secretion from and cytolytic activity of Vα24JαQ T cells: a feedback mechanism for immune regulation. J. Immunol. 165, 3756–3762 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Trobonjaca, Z., Leithauser, F., Moller, P., Schirmbeck, R. & Reimann, J. Activating immunity in the liver. I. liver dendritic cells (but not hepatocytes) are potent activators of IFN-γ release by liver NKT cells. J. Immunol. 167, 1413–1422 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kadowaki, N. et al. Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells. J. Exp. Med. 193, 1221–1226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takahashi, T. et al. Analysis of human Vα24+ CD4+ NKT cells activated by α-glycosylceramide-pulsed monocyte-derived dendritic cells. J. Immunol. 164, 4458–4464 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Nishimura, T. et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int. Immunol. 12, 987–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Inaba, K., Metlay, J.P., Crowley, M.T. & Steinman, R.M. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J. Exp. Med. 172, 631–640 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Eberl, G. & MacDonald, H.R. Rapid death and regeneration of NKT cells in anti-CD3e or IL-12-treated mice: a major role for bone marrow in NKT cell homoestasis. Immunity 9, 345–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Osman, Y. et al. Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur. J. Immunol. 30, 1919–1928 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Hayakawa, Y. et al. Critical contribution of IFN-γ and NK cells, but not perforin- mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. Eur. J. Immunol. 31, 1720–1727 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Muller, G. et al. Fetal calf serum-free generation of functionally active murine dendritic cells suitable for in vivo therapeutic approaches. J. Invest. Dermatol. 114, 142–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Inaba, K. et al. The formation of immunogenic MHC class II- peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol. 2, 882–888 (2001).

    Article  CAS  Google Scholar 

  46. Dunne, J. et al. Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. J. Immunol. 167, 3129–3138 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Wilson, S.B. & Byrne, M.C. Gene expression in NKT cells: defining a functionally distinct CD1d- restricted T cell subset. Curr. Opin. Immunol. 13, 555–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Nakui, M. et al. Potentiation of antitumor effect of NKT cell ligand, α- galactosylceramide by combination with IL-12 on lung metastasis of malignant melanoma cells. Clin. Exp. Metastasis 18, 147–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Carnaud, C. et al. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  50. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Dhodapkar for critical reading of the manuscript. (*see note below)

*Note: In the AOP version of this article some text was incorrect. The acknowledgments should read: We thank S. Sidobre for the preparation of CD1d tetramers and M. Dhodapkar for critical reading of the manuscript. These errors have been corrected in the HTML version and will appear correctly in print. The PDF version available online has been appended.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph M. Steinman.

Ethics declarations

Competing interests

R. M. S. has equity in a company that is developing the use of dendritic cells for clinical applications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, Si., Shimizu, K., Kronenberg, M. et al. Prolonged IFN-γ–producing NKT response induced with α-galactosylceramide–loaded DCs. Nat Immunol 3, 867–874 (2002). https://doi.org/10.1038/ni827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing