Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signaling via LTβR on the lamina propria stromal cells of the gut is required for IgA production

This article has been updated

Abstract

Peyer's patches (PPs) and/or mesenteric lymph nodes (MLNs) are thought to be essential for immunoglobulin A (IgA) production. We found that the severe IgA deficiency in lymphotoxin-deficient (LT−/−) mice could be fully reversed by reconstitution with LT-expressing bone marrow, despite the absence of both LNs and PPs. The number of IgA precursors from LT−/− mice was not reduced, and they were able to migrate into the lamina propria (LP) of wild-type mice but not of LTβR−/− mice. Consistently, lymphoid tissue chemokines and adhesion molecules were reduced within the LP of LTα−/− and LTβR−/− mice. IgA deficiency in LTα−/− mice was reversed by the transplantation of a segment of RAG-1 (recombination-activating gene 1)–deficient intestine, which confirmed the dispensability of the MLNs and PPs and the sufficiency of the LT-mediated gut microenvironment for IgA production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IgA expression requirements.
Figure 2: IgA production in lethally irradiated mice reconstituted with LT-deficient BM cells.
Figure 3: The number of B1 and IgA+ cells was normal in peritoneal cavity but was greatly reduced in the LP of LT-deficient mice.
Figure 4: Chemokine and adhesion molecule expression in the LP of LTα−/− mice.
Figure 5: Adoptive transfer of peritoneal cavity to WT or LTβR−/− recipients.
Figure 6: IgA-deficiency in LTα−/− mice can be rescued by the transplantation of RAG-1−/− gut.

Similar content being viewed by others

Change history

  • 20 May 2002

    Online figure was updated, PDF was ammended with note. Issue PDF contains "corrected 20 May 2002 (details online)" line.

References

  1. Brandtzaeg, P. et al. The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171, 45–87 (1999).

    Article  CAS  Google Scholar 

  2. Weiner, H. et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol. 12, 809–837 (1994).

    Article  CAS  Google Scholar 

  3. Staats, H.F. et al. Mucosal immunity to infection with implications for vaccine development. Curr. Opin. Immunol. 6, 572–583 (1994).

    Article  CAS  Google Scholar 

  4. Burrows, P.D. & Cooper, M.D. IgA deficiency. Adv. Immunol. 65, 245–276 (1997).

    Article  CAS  Google Scholar 

  5. Macpherson, A.J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  Google Scholar 

  6. Sandler, S.G., Mallory, D., Malamut, D. & Eckrich, R. IgA anaphylactic transfusion reactions. Transfus. Med. Rev. 9, 1–8 (1995).

    Article  CAS  Google Scholar 

  7. Craig, S.W. & Cebra, J.J. Peyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J. Exp. Med. 134, 188–200 (1971).

    Article  CAS  Google Scholar 

  8. Husband, A.J. & Gowans, J.L. The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J. Exp. Med. 148, 1146–1160 (1978).

    Article  CAS  Google Scholar 

  9. Yamamoto, M. et al. Alternate mucosal immune system: organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. J. Immunol. 164, 5184–5191 (2000).

    Article  CAS  Google Scholar 

  10. Spahn, T.W. et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur. J. Immunol. 31, 1278–1287 (2001).

    Article  CAS  Google Scholar 

  11. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    Article  CAS  Google Scholar 

  12. Brandtzaeg, P., Baekkevold, E.S. & Morton, H.C. From B to A the mucosal way. Nature Immunol. 2, 1093–1094 (2001).

    Article  CAS  Google Scholar 

  13. Berland, R. & Wortis, H.H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  Google Scholar 

  14. Mowat, A.M. & Viney, J.L. The anatomical basis of intestinal immunity. Immunol. Rev. 156, 145–166 (1997).

    Article  CAS  Google Scholar 

  15. Griebel, P.J. & Hein, W.R. Expanding the role of Peyer's patches in B-cell ontogeny. Immunol. Today 17, 30–39 (1996).

    Article  CAS  Google Scholar 

  16. Husband, A.J., Bao, S. & Beagley, K.W. Analysis of the mucosal microenvironment: factors determining successful responses to mucosal vaccines. Vet. Immunol. Immunopathol. 72, 135–142 (1999).

    Article  CAS  Google Scholar 

  17. Fujihashi, K. et al. Peyer's patches are required for oral tolerance to proteins. Proc. Natl. Acad. Sci. USA 98, 3310–3315 (2001).

    Article  CAS  Google Scholar 

  18. Fagarasan, S. et al. Mechanism of B1 cell differentiation and migration in GALT. Curr. Top. Microbiol. Immunol. 252, 221–229 (2000).

    CAS  PubMed  Google Scholar 

  19. Kroese, F.G., de Waard, R. & Bos, N. A. B-1 cells and their reactivity with the murine intestinal microflora. Semin. Immunol. 8, 11–18 (1996).

    Article  CAS  Google Scholar 

  20. Auci, D.L., Chice, S.M., Heusser, C., Athanassiades, T.J. & Durkin, H.G. Origin and fate of IgE-bearing lymphocytes. II. Gut-associated lymphoid tissue as sites of first appearance of IgE-bearing B lymphocytes and hapten-specific IgE antibody-forming cells in mice immunized with benzylpenicilloyl-keyhole limpet hemocyanin by various routes: relation to asialo GM1 ganglioside+ cells and IgE/CD23 immune complexes. J. Immunol. 149, 2241–2248 (1992).

    CAS  PubMed  Google Scholar 

  21. Fagarasan, S. et al. Alymphoplasia (aly)-type nuclear factor κB-inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut-associated lymphatic tissue system. J. Exp. Med. 191, 1477–1486 (2000).

    Article  CAS  Google Scholar 

  22. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  Google Scholar 

  23. Banks, T.A. et al. Lymphotoxin-α-deficient mice: effects on secondary lymphoid organ development and humoral immune responsiveness. J. Immunol. 155, 1685–1693 (1995).

    CAS  PubMed  Google Scholar 

  24. Fu, Y.X. & Chaplin, D.D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433 (1999).

    Article  CAS  Google Scholar 

  25. Davis, I.A., Knight, K.A. & Rouse, B.T. The spleen and organized lymph nodes are not essential for the development of gut-induced mucosal immune responses in lymphotoxin- alpha deficient mice. Clin. Immunol. Immunopathol. 89, 150–159 (1998).

    Article  CAS  Google Scholar 

  26. Ware, C., VanArsdale, T., Crowe, P. & Browning, J. The ligands and receptors of the lymphotoxin system. Curr. Top. Microbiol. Immunol. 198, 175–218 (1995).

    CAS  PubMed  Google Scholar 

  27. Pasparakis, M. et al. Peyers patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor. Proc. Natl. Acad. Sci. USA 94, 6319–6323 (1997).

    Article  CAS  Google Scholar 

  28. Ryffel, B., Le Hir, M., Muller, M. & Eugster, H.P. Correction of the TNF-LTα-deficient phenotype by bone marrow transplantation. Dev. Immunol. 6, 253–260 (1998).

    Article  CAS  Google Scholar 

  29. Davis, I.A. & Rouse, B.T. Immune responsiveness of lymphotoxin-α-deficient mice: two reconstitution models. Cell. Immunol. 189, 116–124 (1998).

    Article  CAS  Google Scholar 

  30. Ansel, K.M., Harris, R.B. & Cyster, J.G. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16, 67–76 (2002).

    Article  CAS  Google Scholar 

  31. Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002).

    Article  CAS  Google Scholar 

  32. Ngo, V.N. et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    Article  CAS  Google Scholar 

  33. Gunn, M.D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391, 799–803 (1998).

    Article  CAS  Google Scholar 

  34. Kunkel, E.J. & Butcher, E.C. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16, 1–4 (2002).

    Article  CAS  Google Scholar 

  35. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  36. Mackay, F., Majeau, G.R., Lawton, P., Hochman, P.S. & Browning, J.L. Lymphotoxin but not tumor necrosis factor functions to maintain splenic architecture and humoral responsiveness in adult mice. Eur. J. Immunol. 27, 2033–2042 (1997).

    Article  CAS  Google Scholar 

  37. Macpherson, A.J. et al. IgA production without μ or δ chain expression in developing B cells. Nature Immunol. 2, 625–631 (2001).

    Article  CAS  Google Scholar 

  38. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H. & Pfeffer, K. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  CAS  Google Scholar 

  39. Rennert, P.D., Browning, J.L., Mebius, R., Mackay, F. & Hochman, P.S. Surface lymphotoxinα/β complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184, 1999–2006 (1996).

    Article  CAS  Google Scholar 

  40. Fu, Y.X. et al. Lymphotoxin-α (LTα) supports development of splenic follicular structure that is required for IgG responses. J. Exp. Med. 185, 2111–2120 (1997).

    Article  CAS  Google Scholar 

  41. Wang, J. et al. The regulation of T cell homeostasis and autoimmunity by T cell derived LIGHT. J. Clin. Invest. 108,1771–1780 (2001).

    Article  CAS  Google Scholar 

  42. Lefrancois, L. & Lycke, N. in Current Protocol Immunology Vol. 1 (ed. Coico, R.) 3.19.1–16 (John Wiley & Sons, New York, 1996).

    Google Scholar 

  43. Guo, Z. et al. Cutting edge: membrane lymphotoxin regulates CD8+ T cell-mediated intestinal allograft rejection. J. Immunol. 167, 4796–4800 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Cell Culture Center for the LTβR-Ig. Supported in part by NIH grants (HD-37104 and DK-58897) and Biogen. LTβR−/− mice were kindly provided by K. Pfeffer (Technical University of Munich, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Xin Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, HS., Chin, R., Wang, Y. et al. Signaling via LTβR on the lamina propria stromal cells of the gut is required for IgA production. Nat Immunol 3, 576–582 (2002). https://doi.org/10.1038/ni795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing