Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes

Abstract

The progression of autoimmune diabetes is regulated. We examined here the cellular controls exerted on disease that developed in the BDC2.5 T cell receptor–transgenic model. We found that all BDC2.5 mice with a monoclonal, β cell–reactive, T cell repertoire developed diabetes before 4 weeks of age; transfer of splenocytes from young standard NOD (nonobese diabetic) mice into perinatal monoclonal BDC2.5 animals protected them from diabetes. The protective activity was generated by CD4+ αβ T cells, which operated for a short time at disease initiation, could be partitioned according to DX5 cell surface marker expression and split into two components. Protection did not involve clonal deletion or anergy of the autoreactive BDC2.5 cells, permitting their full activation and attack of pancreatic islets; rather, it tempered the aggressiveness of the insulitic lesion and the extent of β cell destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exclusive expression of the transgene-encoded TCR accelerates diabetes in BDC2.5 mice.
Figure 2: CD4+ αβ T cells protect B/Ro mice from diabetes.
Figure 3: Not the usual suspects.
Figure 4: Surface expression of the DX5 distinguishes two populations required for optimal protection.
Figure 5: DX5+ and NK1.1+ CD4+ T cells are distinct populations.
Figure 6: IL-4 and IL-10 are required by protective cells, but cross-complement.
Figure 7: Protective cells do not prevent insulitis; they merely control it.
Figure 8: Phenotypic alterations in aggressive and protective populations.

Similar content being viewed by others

References

  1. Katz, J. D., Wang, B., Haskins, K., Benoist, C. & Mathis, D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Haskins, K., Portas, M., Bergman, B., Lafferty, K. & Bradley, B. Pancreatic islet-specific T-cell clones from nonobese diabetic mice. Proc. Natl Acad. Sci. USA 86, 8000–8004 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gonzalez, A. et al. Genetic control of diabetes progression. Immunity 7, 873–883 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Luhder, F., Höglund, P., Allison, J. P., Benoist, C. & Mathis, D. Cytotoxic T lymphocyte-associated antigen 4 regulates the unfolding of autoimmune diabetes. J. Exp. Med. 187, 427–432 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. André-Schmutz, I., Hindelang, C., Benoist, C. & Mathis, D. Cellular and molecular changes accompanying the progression from insulitis to diabetes. Eur. J. Immunol. 29, 245–255 (1999).

    Article  PubMed  Google Scholar 

  6. Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med. 186, 1663–1676 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luhder, F., Chambers, C., Allison, J. P., Benoist, C. & Mathis, D. Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc. Natl Acad. Sci. USA 97, 12204–12209 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balasa, B., Van Gunst, K. & Sarvetnick, N. The microbial product lipoploysaccharide confers diabetogenic potential on repertoire of BDC2. 5/NOD mice: implications for the etiology of autoimmunity. Clin. Immunol. 95, 93–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Horwitz, M. S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nature Med. 4, 781–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Groux, H. & Powrie, F. Regulatory T cells and inflammatory bowel disease. Immunol. Today 20, 442–445 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Roncarolo, M.-G. & Levings, M. K. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr. Opin. Immunol. 12, 676–683 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Waldmann, H. & Cobbold, S. Regulating the immune response to transplants: a role for CD4+ regulatory cells? Immunity 14, 399–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Höglund, P., Mintern, J., Heath, W., Benoist, C. & Mathis, D. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J. Exp. Med. 189, 331–339 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, B., Gonzalez, A., Benoist, C. & Mathis, D. The role of CD8+ T cells in initiation of insulin-dependent diabetes mellitus. Eur. J. Immunol. 26, 1762–1769 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Surh, C. D. & Sprent, J. Homeostatic T cell proliferation. How far can T cells be activated to self-ligands? J. Exp. Med. 192, 9–14 (2000).

    Article  PubMed Central  Google Scholar 

  20. Carnaud, C., Gombert, J., Donnars, O., Garchon, H. & Herbelin, A. Protection against diabetes and improved NK/NKT cell performance in NOD. NK1. 1 mice congenic at the NK complex. J. Immunol. 166, 2404–2411 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Arase, H., Saito, T., Philips, J. H. & Lanier, L. L. The mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol. 167, 1141–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Fritz, R. B. & Zhao, M. L. Regulation of experimental autoimmune encephalomyelitis in the C57BL/6J mouse by NK1.1+, DX5+, αβ+ T cells. J. Immunol. 166, 4209–4215 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Slifka, M. K., Pagarigan, R. R. & Whitton, J. L. NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J. Immunol. 164, 2009–2015 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, B. et al. Interleukin-4 deficiency does not worsen disease in NOD mice. Diabetes 47, 1207–1211 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Kurrer, M. O., Pakala, S. V., Hanson, H. L. & Katz, J. D. B cell apoptosis in T cell-mediated autoimmune diabetes. Proc. Natl Acad. Sci. USA 94, 213–218 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olivares-Villagomez, D., Wang, Y. & Lafaille, J. J. Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J. Exp. Med. 188, 1883–1894 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olivares-Villagomez, D., Wensky, A. K., Wang, Y. & Lafaille, J. Repertoire requirements of CD4+ T cells that prevent spontaneous autoimmune encephalomyelitis. J. Immunol. 164, 5499–5507 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Luhder, F., Katz, J., Benoist, C. & Mathis, D. MHC class II molecules can protect from diabetes by positively selecting T cells with additional specificities. J. Exp. Med. 187, 379–387 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salomon, B. et al. B7/CD28 Costimulation is Essential for the Homeostasis of the CD4+CD25+ Immunoregulatory T Cells that Control Autoimmune Diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Lepault, F. & Gagnerault, M. C. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes in nonobese diabetic mice. J. Immunol. 164, 240–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Baxter, A. G., Kinder, S. J., Hammond, K. J. L., Scollay, R. & Godfrey, D. I. Association between αβTCR+CD4CD8 T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572–582 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14-Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi, F. D. et al. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA 98, 6777–6782 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hammond, K. J. et al. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 29, 3768–3781 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Ortaldo, J. R., Winkler-Pickett, R., Mason, A. T. & Mason, L. H. The Ly-49 family: regulation of cytotoxicity and cytokine production murine CD3+ cells. J. Immunol. 160, 1158–1165 (1998).

    CAS  PubMed  Google Scholar 

  37. Moodycliffe, A. M., Maiti, S. & Ullrich, S. E. Splenic NK1. 1, TCR αβ intermediate CD4+ T cells exist in naive NK1. 1 allelic positive and negative mice, with the capacity to rapidly secrete large amounts of IL-4 and IFN-γ upon primary TCR stimulation. J. Immunol. 162, 5156–5163 (1999).

    CAS  PubMed  Google Scholar 

  38. Behar, S. M. & Cardell, S. Diverse CD1d-restricted T cells: diverse phenotypes, and diverse functions. Semin. Immunol. 12, 551–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Gombert, J. M. et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol. 26, 2989–2998 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Poulton, L. D. et al. Cytometric and functional analyses of NK and NKT cell deficiency in NOD mice. Int. Immunol. 13, 887–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulator cells constitutively expressing cytotoxic T lymphocyte-associated antigen. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ludewig, B. et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 191, 795–804 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  45. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benoist, C. & Howard, M. Editorial overview. Curr. Opin. Immunol. 12, 661–663 (2001).

    Article  Google Scholar 

  47. Stockinger, B., Barthlott, T. & Kassiotis, G. T cell regulation: a special job or everyone's responsibility? Nature Immunol. 2, 757 (2001).

    Article  CAS  Google Scholar 

  48. hilpott, K. L. et al. Lymphoid development in mice congenitally lacking T cell receptor αβ-expressing cells. Science 256, 1448–1452 (1992).

    Article  Google Scholar 

  49. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoreactivity. Cell 87, 811–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Katz, J., Benoist, C. & Mathis, D. Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice. Eur. J. Immunol. 23, 3358–3360 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Chan, S. H., Cosgrove, D., Waltzinger, C., Benoist, C. & Mathis, D. Another view of the selective model of thymocyte selection. Cell 73, 225–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Openshaw, P. et al. Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J. Exp. Med. 182, 1357–1367 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Lanier, K. Rajewsky, F. Luhder and P. Hoglund for reagents and discussion; C. Waltzinger and C. Ebel for cell sorting; T. Ding for histology; and P. Michel and M. Gendron for maintaining the mice. Supported by institute funds from the INSERM, the CNRS, the Hopital Universitaire de Strasbourg and the Juvenile Diabetes Foundation International (A. G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Benoist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, A., Andre-Schmutz, I., Carnaud, C. et al. Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes. Nat Immunol 2, 1117–1125 (2001). https://doi.org/10.1038/ni738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing