The immunological synapse and CD28-CD80 interactions


According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR–MHC-peptide recognition. The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR–MHC-peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Costimulatory effect of GPI-CD80 on transgenic T cell activation.
Figure 2: Naïve T cells do not adhere to CD80 substrates.
Figure 3: CD28-CD80 binding parameters.
Figure 4: Low CD28 mobility regulated by its cytoplasmic tail.
Figure 5: The CD28 cytoplasmic domain of CD28 limited interaction with CD80.
Figure 6: CD28 engagement had no effect on I-Ek or ICAM-1 engagement within the immunological synapse.
Figure 7: CD80 engagement in the central cluster was not required for formation of the immunological synapse.


  1. 1

    Babcock, S. K., Gill, R. G., Bellgrau, D. & Lafferty, K. J. Studies on the two-signal model for T cell activation in vivo. Transplant. Proc. 19, 303–306 (1987).

  2. 2

    Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

  3. 3

    Thompson, C. B. et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc. Natl. Acad. Sci. USA 86, 1333–1337 (1989).

  4. 4

    Shaw, A. S. & Dustin, M. L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6, 361–369 (1997).

  5. 5

    Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

  6. 6

    Tuosto, L. & Acuto, O. CD28 affects the earliest signaling events generated by TCR engagement. Eur. J. Immunol. 28, 2131–2142 (1998).

  7. 7

    Pagès, F. et al. Binding of phosphatidyl-inositol-3-OH kinase to CD28 is required for T cell signalling. Nature 369, 327–329 (1994).

  8. 8

    August, A. et al. CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc. Natl. Acad. Sci. USA 91, 9347–9351 (1994).

  9. 9

    Holdorf, A. D. et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J. Exp. Med. 190, 375–384 (1999).

  10. 10

    Kalli, K., Huntoon, C., Bell, M. & McKean, D. J. Mechanism responsible for T-cell antigen receptor- and CD28- or interleukin 1 (IL-1) receptor-initiated regulation of IL-2 gene expression by NF-κB. Mol. Cell. Biol. 18, 3140–3148 (1998).

  11. 11

    Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

  12. 12

    Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

  13. 13

    Wülfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

  14. 14

    Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

  15. 15

    Dustin, M. L. & Shaw, A. S. Costimulation: Building an immunological synapse. Science 283, 649–650 (1999).

  16. 16

    Michel, F. & Acuto, O. Induction of T cell adhesion by antigen stimulation and modulation by the coreceptor CD4. Cell. Immunol. 173, 165–175 (1996).

  17. 17

    Schwartz, J. C., Zhang, X., Fedorov, A. A., Nathenson, S. G. & Almo, S. C. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 410, 604–608 (2001).

  18. 18

    Dustin, M. L. et al. Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J. Biol. Chem. 272, 30889–30898 (1997).

  19. 19

    Wild, M. K. et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex. J. Exp. Med. 190, 31–41 (1999).

  20. 20

    McConnell, H. M., Watts, T. H., Weis, R. M. & Brian, A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim. Biophys. Acta 864, 95–106 (1986).

  21. 21

    Johnson, K. G., Bromley, S. K., Dustin, M. L. & Thomas, M. L. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl. Acad. Sci. USA 97, 10138–10143 (2000).

  22. 22

    Sagerström, C. G., Kerr, E. M., Allison, J. P. & Davis, M. M. Activation and differentiation requirements of primary T cells in vitro. Proc. Natl. Acad. Sci. USA 90, 8987–8991 (1993).

  23. 23

    Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

  24. 24

    Doty, R. T. & Clark, E. A. Subcellular localization of CD80 receptors is dependent on an intact cytoplasmic tail and is required for CD28-dependent T cell costimulation. J. Immunol. 157, 3270–3279 (1996).

  25. 25

    McHugh, R. S., Ahmed, S. N., Wang, Y. C., Sell, K. W. & Selvaraj, P. Construction, purification and functional incorporation on tumor cells of glycolipid-anchored human B7-1 (CD80). Proc. Natl. Acad. Sci. USA 92, 8059–8063 (1995).

  26. 26

    Chan, P. Y. et al. The influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J. Cell. Biol. 115, 245–255 (1991).

  27. 27

    Liu, S. J., Hahn, W. C., Bierer, B. E. & Golan, D. E. Intracellular mediators regulate CD2 lateral diffusion and cytoplasmic calcium ion mobilization upon CD2-mediated T cell activation. Biophys. J. 68, 459–470 (1995).

  28. 28

    Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

  29. 29

    van der Merwe, P. A., McNamee, P. N., Davies, E. A., Barclay, A. N. & Davis, S. J. Topology of the CD2-CD48 cell-adhesion molecule complex: implications for antigen recognition by T cells. Curr. Biol. 5, 74–84 (1995).

  30. 30

    Linsley, P. S., Clark, E. A. & Ledbetter, J. A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. USA 87, 5031–5035 (1990).

  31. 31

    Kaga, S., Ragg, S., Rogers, K. A. & Ochi, A. Stimulation of CD28 with B7–2 promotes focal adhesion-like cell contacts where Rho family small G proteins accumulate in T cells. J. Immunol. 160, 24–27 (1998).

  32. 32

    Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naïve T cells: adhesion versus costimulation. Immunity 7, 549–557 (1997).

  33. 33

    Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signalling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

  34. 34

    Stamper, C. C. et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410, 608–611 (2001).

  35. 35

    Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000).

  36. 36

    Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

  37. 37

    Yashiro-Ohtani, Y. et al. Non-CD28 costimulatory molecules present in T cell rafts induce T cell costimulation by enhancing the association of TCR with rafts. J. Immunol. 164, 1251–1259 (2000).

  38. 38

    Bischof, A., Hara, T., Lin, C. H., Beyers, A. D. & Hunig, T. Autonomous induction of proliferation, JNK and NF-κB activation in primary resting T cells by mobilized CD28. Eur. J. Immunol. 30, 876–882 (2000).

  39. 39

    Kucik, D. F., Dustin, M. L., Miller, J. M. & Brown, E. J. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest. 97, 2139–2144 (1996).

  40. 40

    Stein, P. H., Fraser, J. D. & Weiss, A. The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol. Cell. Biol. 14, 3392–3402 (1994).

  41. 41

    Berg, L. J. et al. Expression of T-cell receptor α-chain genes in transgenic mice. Mol. Cell. Biol. 8, 5459–5469 (1988).

  42. 42

    Krensky, A. M. et al. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J. Immunol. 131, 611–616 (1983).

  43. 43

    Razi-Wolf, Z. et al. Expression and function of the murine B7 antigen, the major costimulatory molecule expressed by peritoneal exudate cells. Proc. Natl. Acad. Sci. USA 89, 4210–4214 (1995).

  44. 44

    Takei, F. Inhibition of mixed lymphocyte response by a rat monoclonal antibody to a novel murine lymphocyte activation antigen (MALA-2). J. Immunol. 134, 1403–1407 (1985).

  45. 45

    Ozato, K., Mayer, N. & Sachs, D. H. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J. Immunol. 124, 533–540 (1980).

  46. 46

    Olive, D. et al. Anti-CD2 (sheep red blood cell receptor) monoclonal antibodies and T cell activation I. Pairs of anti-T11.1 and T11.2 (CD2 subgroups) are strongly mitogenic for T cells in presence of 12-O-tetradecanoylphorbol 13-acetate. Eur. J. Immunol. 16, 1063–1068 (1986).

  47. 47

    Reay, P. A. et al. Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626–5634 (2000).

  48. 48

    Nunes, J. et al. CD28 mAbs with distinct binding properties differ in their ability to induce T cell activation: analysis of early and late activation events. Int. Immunol. 5, 311–315 (1993).

  49. 49

    Kato, K. et al. CD48 is a counter-receptor for mouse CD2 and is involved in T cell activation. J. Exp. Med. 176, 1241–1249 (1992).

  50. 50

    Freeman, G. J. et al. Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J. Exp. Med. 174, 625–631 (1991).

  51. 51

    Coyne, K. E., Crisci, A. & Lublin, D. M. Construction of synthetic signals for glycosyl-phosphatidylinositol anchor attachment. Analysis of amino acid sequence requirements for anchoring. J. Biol. Chem. 268, 6689–6693 (1993).

  52. 52

    Warren, T. G. et al. High-level expression of biologically active, soluble forms of ICAM-1 in a novel mammalian-cell expression system. Protein Express. Purif. 5, 498–508 (1994).

  53. 53

    van der Merwe, P. A., Bodian, D. L., Daenke, S., Linsley, P. & Davis, S. J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med. 185, 393–403 (1997).

  54. 54

    Linsley, P. S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730 (1991).

  55. 55

    Dustin, M. L., Bromley, S. K., Kan, Z., Peterson, D. A. & Unanue, E. R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 3909–3913 (1997).

  56. 56

    Munson, P. J. & Rodbard, D. Number of receptor sites from Scatchard and Klotz graphs: a constructive critique. Science 220, 979–981 (1983).

  57. 57

    Bell, G. I., Dembo, M. & Bongrand, P. Cell adhesion: Competition between nonspecific repulsion and specific binding. Biophys. J. 45, 1051–1064 (1984).

  58. 58

    Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. L. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

Download references


We thank H. Reiser and M. Naquet for cells producing the 1610A1 and H155 antibodies, respectively; G. Freeman for the mCD80 cDNA;A. Holdorf for Jurkat cells expressing truncation mutants of murine CD28; R. Burack for sharing his unpublished results on cooperation of CD2 and CD28; R. Houdei for cell and antibody production; and R. Barrett for preparation of the manuscript. Supported by funds from the NIH, HHMI, the Whitaker Foundation and Irene Diamond.

Author information

Correspondence to Michael L. Dustin.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bromley, S., Iaboni, A., Davis, S. et al. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2, 1159–1166 (2001) doi:10.1038/ni737

Download citation

Further reading