Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic cells signal T cells in the absence of exogenous antigen

Abstract

Interactions with self–major histocompatibility complex molecules on dendritic cells (DCs) are important for the survival of mature CD4+ T cells. We have followed the DC-mediated signal from the T cell surface to the nucleus and identified a pattern of activation that correlates with increased in vitro survival. This response is induced exclusively by DCs and is likely associated with a modulation of the T cell activation threshold. We have also found that DC-mediated activation results in antigen-independent cytokine gene expression, which points to a new role for DCs in shaping the cytokine milieu. Such antigen-independent activation of T cells may play a role in protective immunity, but may also induce and perpetuate autoimmune states such as multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of cytokine-induced DCs.
Figure 2: Unpulsed cytokine-induced DCs were able to induce weak proliferation of T cell clones.
Figure 3: Effect of DCs on survival of T cell clones. Kinetic analysis.
Figure 4: DCs induced signs of activation in T cell clones.
Figure 5: DCs induced signs of activation in other T cell lines.
Figure 6: DCs induced a unique pattern of signal transduction in the absence of antigen.
Figure 7: DCs induce modification of gene expression.

Similar content being viewed by others

References

  1. Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naïve or memory T cells. Science 276, 2057–2062 (1996).

    Article  Google Scholar 

  2. Takeda, S., Rodewald, H. R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    Article  CAS  Google Scholar 

  3. Viret, C., Wong, S. & Janeway, C. A. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 10, 559–568 (1999).

    Article  CAS  Google Scholar 

  4. Rooke, R., Waltzinger, C., Benoist, C. & Mathis, D. Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7, 123–124 (1997).

    Article  CAS  Google Scholar 

  5. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    Article  CAS  Google Scholar 

  6. Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).

    Article  CAS  Google Scholar 

  7. Garcia, S., DiSanto, J. & Stockinger, B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11,163–171 (1999).

    Article  CAS  Google Scholar 

  8. Martin, W. D. et al. H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell 84, 543–50 (1996).

    Article  CAS  Google Scholar 

  9. Muranski, P., Chmielowski, B. & Ignatowicz, L. Mature CD4+ T cells perceive a positively selecting class II MHC/peptide complex in the periphery. J. Immunol. 164, 3087–3094 (2000).

    Article  CAS  Google Scholar 

  10. Delon, J., Bercovici, N., Raposo, G., Liblau, R. & Trautmann, A. Antigen-dependent and -independent Ca2+ responses triggered in T cells by dendritic cells compared with B cells. J. Exp. Med. 188, 1473–1484 (1998).

    Article  CAS  Google Scholar 

  11. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  Google Scholar 

  12. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  13. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nature Immunol. 1, 305–310 (2000).

    Article  CAS  Google Scholar 

  14. Romani, N. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83–93 (1994).

    Article  CAS  Google Scholar 

  15. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor-α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  Google Scholar 

  16. Palucka, K. A., Taquet N., Sanchez-Chapuis, F. & Gluckman, J. C. Dendritic cells as the terminal stage of monocyte differentiation. J. Immunol. 160, 4587–4595 (1998).

    CAS  PubMed  Google Scholar 

  17. Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol. 18, 83–111 (2000).

    Article  CAS  Google Scholar 

  18. Hemmer B., Stefanova, I., Vergelli, M., Germain, R. N. & Martin, R. Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T cells. J. Immunol. 160, 5807–5814 (1998).

    CAS  PubMed  Google Scholar 

  19. Chicz, R. M. et al. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358, 764–768 (1992).

    Article  CAS  Google Scholar 

  20. Bachmann, M. F. et al. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naïve and memory T cells. J. Exp. Med. 189, 1521–1530 (1999).

    Article  CAS  Google Scholar 

  21. Dittel, B., Stefanova, I., Germain, R. N. & Janeway, C. A Jr Cross antagonism of a T cell clone expressing two distinct T cell receptors. Immunity 11, 289–298 (1999).

    Article  CAS  Google Scholar 

  22. McKeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1995).

    Article  CAS  Google Scholar 

  23. Germain, R. N. & Stefanova, I. The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu. Rev. Immunol. 17, 467–522 (1999).

    Article  CAS  Google Scholar 

  24. Kersh, E. N., Shaw, A. S. & Allen, P. M. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575 (1998).

    Article  CAS  Google Scholar 

  25. Rabinowitz, J. D., Beeson, C., Lyons, D. S., Davis, M. M. & McConnell, H. M. Kinetic discrimination in T-cell activation. Proc. Natl Acad. Sci. USA 93, 1401–1405 (1996).

    Article  CAS  Google Scholar 

  26. Dorfman, J. R., Stefanova, I., Yasutomo, K. & Germain, R. N. CD4+ T cell survival is not directly linked to self-MHC-induced TCR signaling. Nature Immunol. 1, 329–335 (2000).

    Article  CAS  Google Scholar 

  27. Link, H., Huang, Y. M. & Xiao B. G. Dendritic cells in experimental allergic encephalomyelitis and multiple sclerosis. J. Neuroimmunol. 100, 102–110 (1999).

    Article  CAS  Google Scholar 

  28. Drakesmith, H., Chain, B. & Beverley, P. How can dendritic cells cause autoimmune disease? Immunol. Today 21, 214–217 (2000).

    Article  CAS  Google Scholar 

  29. Huang Y. M. et al. Multiple sclerosis is associated with high levels of circulating dendritic cells secreting pro-inflammatory cytokines. J. Neuroimmunol. 99, 82–90 (1999).

    Article  CAS  Google Scholar 

  30. Olsson, T. et al. Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-γ. J. Clin. Invest. 86, 981–985 (1990).

    Article  CAS  Google Scholar 

  31. Szabo, S. J., Dighe, A. S., Gubler, U. & Murphy, K. M. Regulation of the interleukin (IL)-12Rβ2 subunit expression in developing T helper (TH1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  Google Scholar 

  32. Chang, J. T., Segal, B. M. & Shevach, E. M. Regulation of interleukin (IL-12) receptor β2 subunit expression by endogenous IL-12: a critical step in the differentiation of pathogenic autoreactive T cells. J. Exp. Med. 189, 969–978 (1999).

    Article  CAS  Google Scholar 

  33. Chang, J. T., Segal, B. M. & Shevach, E. M. Role of costimulation in the induction of the IL-12/IL-12 receptor pathway and the development of autoimmunity. J. Immunol. 164, 100–106 (2000).

    Article  CAS  Google Scholar 

  34. Aiba, S. & Tagami, H. Dendritic cell activation induced by various stimuli, e.g. exposure to microorganisms, their products, cytokines, and simple chemicals as well as adhesion to extracellular matrix. J. Dermatol. Sci. 20,1–13 (1999).

    Article  CAS  Google Scholar 

  35. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic Cells. Nature Med. 5, 1249–1255 (1999).

    Article  CAS  Google Scholar 

  36. Vergelli, M. et al. Differential activation of human autoreactive T cell clones by altered peptide ligands derived from myelin basic protein peptide (87–99). Eur. J. Immunol. 26, 2624–2634 (1996).

    Article  CAS  Google Scholar 

  37. Martin, R. et al. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J. Exp. Med. 173, 19–24 (1991).

    Article  CAS  Google Scholar 

  38. Abrahamsen, T. G. et al. Stimulatory effect of counterflow centrifugal elutriation in large-scale separation of peripheral blood monocytes can be reversed by storing the cells at 37 ° C. J. Clin. Apheresis 6, 48–53 (1991).

    Article  CAS  Google Scholar 

  39. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. McFarland for critical reading of the manuscript. K. P. W. was supported by a grant from the Deutsche Forschungsgemeinschaft (Wa 1343/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, T., Cortese, I., Markovic-Plese, S. et al. Dendritic cells signal T cells in the absence of exogenous antigen. Nat Immunol 2, 932–938 (2001). https://doi.org/10.1038/ni711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing