Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MALT1 directs B cell receptor–induced canonical nuclear factor-κB signaling selectively to the c-Rel subunit

Abstract

NF-κB (Rel) transcription factors control physiological and pathological immune cell function. The scaffold proteins Bcl-10 and MALT1 couple antigen-receptor signals to the canonical NF-κB pathway and are pivotal in lymphomagenesis. Here we found that Bcl-10 and MALT1 differentially regulated B cell receptor–induced activation of RelA and c-Rel. Bcl-10 was essential for recruitment of the kinase IKK into lipid rafts for the activation of RelA and c-Rel, for blocking apoptosis and for inducing division after B cell receptor ligation. In contrast, MALT1 participated in survival signaling but was not involved in IKK recruitment or activation and was dispensable for RelA induction and proliferation. MALT1 selectively activated c-Rel to control a distinct subprogram. Our results provide mechanistic insights into B cell receptor–induced survival and proliferation signals and demonstrate the selective control of c-Rel in the canonical NF-κB pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common functions for Bcl-10 and MALT1 in signaling for the survival of mature B cells.
Figure 2: Distinct functions for Bcl-10 and MALT1 after B cell activation.
Figure 3: Bcl-10 and MALT1-dependent control of survival programs in activated B cells.
Figure 4: Enforced BCL2 expression blocks apoptosis but does not restore the proliferation of BCR-stimulated Bcl10−/− B cells.
Figure 5: Differential control of BCR-induced IKK activation by Bcl-10 and MALT1.
Figure 6: Bcl-10- and MALT1-dependent regulation of IκB degradation and NF-κB DNA binding.
Figure 7: MALT1 controls the BCR-mediated nuclear translocation of c-Rel.
Figure 8: MALT1 controls the degradation of IκB molecules that are bound to c-Rel.

Similar content being viewed by others

References

  1. Hayden, M.S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  Google Scholar 

  2. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109 Suppl, S81–S96 (2002).

    Article  CAS  Google Scholar 

  3. Gerondakis, S. et al. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 25, 6781–6799 (2006).

    Article  CAS  Google Scholar 

  4. Kurosaki, T. Regulation of B-cell signal transduction by adaptor proteins. Nat. Rev. Immunol. 2, 354–363 (2002).

    Article  CAS  Google Scholar 

  5. Siebenlist, U., Brown, K. & Claudio, E. Control of lymphocyte development by nuclear factor-κB. Nat. Rev. Immunol. 5, 435–445 (2005).

    Article  CAS  Google Scholar 

  6. Thome, M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat. Rev. Immunol. 4, 348–359 (2004).

    Article  CAS  Google Scholar 

  7. Ruland, J. & Mak, T.W. Transducing signals from antigen receptors to nuclear factor κB. Immunol. Rev. 193, 93–100 (2003).

    Article  CAS  Google Scholar 

  8. Su, T.T. et al. PKC-β controls IκB kinase lipid raft recruitment and activation in response to BCR signaling. Nat. Immunol. 3, 780–786 (2002).

    Article  CAS  Google Scholar 

  9. Moreno-Garcia, M.E., Sommer, K.M., Bandaranayake, A.D. & Rawlings, D.J. Proximal signals controlling B-cell antigen receptor (BCR) mediated NF-κB activation. Adv. Exp. Med. Biol. 584, 89–106 (2006).

    Article  CAS  Google Scholar 

  10. Sommer, K. et al. Phosphorylation of the CARMA1 linker controls NF-κB activation. Immunity 23, 561–574 (2005).

    Article  CAS  Google Scholar 

  11. Rawlings, D.J., Sommer, K. & Moreno-Garcia, M.E. The CARMA1 signalosome links the signaling machinery of adaptive and innate immunity in lymphocytes. Nat. Rev. Immunol. 6, 799–812 (2006).

    Article  CAS  Google Scholar 

  12. Jost, P.J. & Ruland, J. Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109, 2700–2707 (2007).

    CAS  PubMed  Google Scholar 

  13. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  14. Shipp, M.A. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68–74 (2002).

    Article  CAS  Google Scholar 

  15. Ngo, V.N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    Article  CAS  Google Scholar 

  16. Isaacson, P.G. & Du, M.Q. MALT lymphoma: from morphology to molecules. Nat. Rev. Cancer 4, 644–653 (2004).

    Article  CAS  Google Scholar 

  17. Wegener, E. & Krappmann, D. CARD-Bcl10-Malt1 signalosomes: missing link to NF-κB. Sci. STKE 384, pe21 (2007).

    Google Scholar 

  18. Ruland, J., Duncan, G.S., Wakeham, A. & Mak, T.W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19, 749–758 (2003).

    Article  CAS  Google Scholar 

  19. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  Google Scholar 

  20. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  Google Scholar 

  21. Solvason, N. et al. Transgene expression of Bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in xid B cells. J. Exp. Med. 187, 1081–1091 (1998).

    Article  CAS  Google Scholar 

  22. Vigorito, E., Gambardella, L., Colucci, F., McAdam, S. & Turner, M. Vav proteins regulate peripheral B-cell survival. Blood 106, 2391–2398 (2005).

    Article  CAS  Google Scholar 

  23. Schram, B.R. & Rothstein, T.L. NF-κB is required for surface Ig-induced Fas resistance in B cells. J. Immunol. 170, 3118–3124 (2003).

    Article  CAS  Google Scholar 

  24. Ogilvy, S. et al. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc. Natl. Acad. Sci. USA 96, 14943–14948 (1999).

    Article  CAS  Google Scholar 

  25. Cheng, P.C., Dykstra, M.L., Mitchell, R.N. & Pierce, S.K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560 (1999).

    Article  CAS  Google Scholar 

  26. Xue, L. et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nat. Immunol. 4, 857–865 (2003).

    Article  CAS  Google Scholar 

  27. Bajpai, U.D., Zhang, K., Teutsch, M., Sen, R. & Wortis, H.H. Bruton's tyrosine kinase links the B cell receptor to nuclear factor κB activation. J. Exp. Med. 191, 1735–1744 (2000).

    Article  CAS  Google Scholar 

  28. Ruefli-Brasse, A.A., French, D.M. & Dixit, V.M. Regulation of NF-κB-dependent lymphocyte activation and development by paracaspase. Science 302, 1581–1584 (2003).

    Article  CAS  Google Scholar 

  29. Hara, H. et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 18, 763–775 (2003).

    Article  CAS  Google Scholar 

  30. Grumont, R.J. et al. B lymphocytes differentially use the Rel and nuclear factor κB1 (NF-κB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J. Exp. Med. 187, 663–674 (1998).

    Article  CAS  Google Scholar 

  31. Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).

    Article  CAS  Google Scholar 

  32. Monroe, J.G. ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat. Rev. Immunol. 6, 283–294 (2006).

    Article  CAS  Google Scholar 

  33. Chen, C., Edelstein, L.C. & Gelinas, C. The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bcl-xL . Mol. Cell. Biol. 20, 2687–2695 (2000).

    Article  Google Scholar 

  34. Budd, R.C., Yeh, W.C. & Tschopp, J. cFLIP regulation of lymphocyte activation and development. Nat. Rev. Immunol. 6, 196–204 (2006).

    Article  CAS  Google Scholar 

  35. Grumont, R.J., Rourke, I.J. & Gerondakis, S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev. 13, 400–411 (1999).

    Article  CAS  Google Scholar 

  36. Kontgen, F. et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9, 1965–1977 (1995).

    Article  CAS  Google Scholar 

  37. Liou, H.C., Sha, W.C., Scott, M.L. & Baltimore, D. Sequential induction of NF-κB/Rel family proteins during B-cell terminal differentiation. Mol. Cell. Biol. 14, 5349–5359 (1994).

    Article  CAS  Google Scholar 

  38. Grumont, R.J. & Gerondakis, S. The subunit composition of NF-κB complexes changes during B-cell development. Cell Growth Differ. 5, 1321–1331 (1994).

    CAS  PubMed  Google Scholar 

  39. Miyamoto, S., Schmitt, M.J. & Verma, I.M. Qualitative changes in the subunit composition of κB-binding complexes during murine B-cell differentiation. Proc. Natl. Acad. Sci. USA 91, 5056–5060 (1994).

    Article  CAS  Google Scholar 

  40. Gilmore, T.D., Kalaitzidis, D., Liang, M.C. & Starczynowski, D.T. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 23, 2275–2286 (2004).

    Article  CAS  Google Scholar 

  41. Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    Article  CAS  Google Scholar 

  42. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Greten, T. Mak and M. Reth for scientific discussions; M. Schiemann for cell sorting; G. Häcker (Technical University Munich) for vav-Bcl2 transgenic mice; V. Dixit (Genentech) for anti-MALT1; and E. Muggleton for critically reading the manuscript. Supported by Deutsche Forschungsgemeinschaft (Sonderforschungsbereiche grants) and Deutsche Krebshilfe (Max-Eder-Program grant to J.R).

Author information

Authors and Affiliations

Authors

Contributions

J.R. designed and coordinated the study, analyzed data and wrote the paper; U.F. coordinated the study, did experiments, analyzed data and contributed to manuscript writing; D.K. and C.P. contributed intellectual input; and C.M.z.B., A.G., E.W. and S.R. cooperated in experiments and data analysis.

Corresponding author

Correspondence to Jürgen Ruland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 778 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferch, U., Büschenfelde, C., Gewies, A. et al. MALT1 directs B cell receptor–induced canonical nuclear factor-κB signaling selectively to the c-Rel subunit. Nat Immunol 8, 984–991 (2007). https://doi.org/10.1038/ni1493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing