Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential function for SWI-SNF chromatin-remodeling complexes in the promoter-directed assembly of Tcrb genes

Abstract

The assembly of genes encoding antigen receptors is regulated by developmental changes in chromatin that either permit or deny access to a single variable-(diversity)-joining recombinase. These changes are guided by transcriptional promoters and enhancers, which serve as accessibility-control elements in antigen-receptor loci. The function of each accessibility-control element and the factors they recruit to remodel chromatin remain obscure. Here we show that the recruitment of SWI-SNF chromatin-remodeling complexes compensated for the accessibility-control element function of a promoter but not an enhancer of the T cell receptor-β locus (Tcrb). Loss of SWI-SNF function in thymocytes inactivated recombinase targets at the endogenous Tcrb locus. Thus, initiation of Tcrb gene assembly and T cell development is contingent on the recruitment of SWI-SNF to promoters, which exposes gene segments to variable-(diversity)-joining recombinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The association of BRG1 with DβJβ clusters is ACE-dependent.
Figure 2: ACE-dependent recruitment of BRG1 to a Tcrb mini-locus substrate.
Figure 3: Functional targeting of BRG1 to Tcrb mini-loci.
Figure 4: BRG1 restores ACE function in promoterless substrates.
Figure 5: Impaired Tcrb germline transcription after dominant inhibition of SWI-SNF function.
Figure 6: Depletion of BRG1 and BRM impairs transcription and rearrangement of DβJβ gene segments.

Similar content being viewed by others

References

  1. Cobb, R.M., Oestreich, K.J., Osipovich, O.A. & Oltz, E.M. Accessibility control of V(D)J recombination. Adv. Immunol. 91, 45–109 (2006).

    Article  CAS  Google Scholar 

  2. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).

    Article  CAS  Google Scholar 

  3. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  4. Luger, K. Dynamic nucleosomes. Chromosome Res. 14, 5–16 (2006).

    Article  CAS  Google Scholar 

  5. Woodcock, C.L. Chromatin architecture. Curr. Opin. Struct. Biol. 16, 213–220 (2006).

    Article  CAS  Google Scholar 

  6. Cosma, M.P. Ordered recruitment: gene-specific mechanism of transcription activation. Mol. Cell 10, 227–236 (2002).

    Article  CAS  Google Scholar 

  7. Forsberg, E.C. & Bresnick, E.H. Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays 23, 820–830 (2001).

    Article  CAS  Google Scholar 

  8. Hatzis, P. & Talianidis, I. Dynamics of enhancer-promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).

    Article  CAS  Google Scholar 

  9. Spicuglia, S. et al. Promoter activation by enhancer-dependent and -independent loading of activator and coactivator complexes. Mol. Cell 10, 1479–1487 (2002).

    Article  CAS  Google Scholar 

  10. Workman, J.L. & Kingston, R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998).

    Article  CAS  Google Scholar 

  11. Laurent, B.C., Treich, I. & Carlson, M. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev. 7, 583–591 (1993).

    Article  CAS  Google Scholar 

  12. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  13. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  Google Scholar 

  14. Kingston, R.E. & Narlikar, G.J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    Article  CAS  Google Scholar 

  15. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 Suppl. S45–S55 (2002).

    Article  CAS  Google Scholar 

  16. Krangel, M.S. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat. Immunol. 4, 624–630 (2003).

    Article  CAS  Google Scholar 

  17. Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996).

    Article  CAS  Google Scholar 

  18. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  Google Scholar 

  19. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  20. Chowdhury, D. & Sen, R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241 (2003).

    Article  CAS  Google Scholar 

  21. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000).

    Article  CAS  Google Scholar 

  22. Morshead, K.B., Ciccone, D.N., Taverna, S.D., Allis, C.D. & Oettinger, M.A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl. Acad. Sci. USA 100, 11577–11582 (2003).

    Article  CAS  Google Scholar 

  23. Oestreich, K.J. et al. Regulation of Tcrb gene assembly by a promoter/enhancer holocomplex. Immunity 24, 381–391 (2006).

    Article  CAS  Google Scholar 

  24. Kwon, J., Morshead, K.B., Guyon, J.R., Kingston, R.E. & Oettinger, M.A. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol. Cell 6, 1037–1048 (2000).

    Article  CAS  Google Scholar 

  25. Whitehurst, C.E., Schlissel, M.S. & Chen, J. Deletion of germline promoter PDβ1 from the Tcrb locus causes hypermethylation that impairs Dβ1 recombination by multiple mechanisms. Immunity 13, 703–714 (2000).

    Article  CAS  Google Scholar 

  26. Sikes, M.L., Meade, A., Tripathi, R., Krangel, M.S. & Oltz, E.M. Regulation of V(D)J recombination: A dominant role for promoter positioning in gene segment accessibility. Proc. Natl. Acad. Sci. USA 99, 12309–12314 (2002).

    Article  CAS  Google Scholar 

  27. Johnson, K., Angelin-Duclos, C., Park, S. & Calame, K.L. Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol. Cell. Biol. 23, 2438–2450 (2003).

    Article  CAS  Google Scholar 

  28. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  29. Bories, J.C., Demengeot, J., Davidson, L. & Alt, F.W. Gene-targeted deletion and replacement mutations of the T-cell receptor β-chain enhancer: the role of enhancer elements in controlling V(D)J recombination accessibility. Proc. Natl. Acad. Sci. USA 93, 7871–7876 (1996).

    Article  CAS  Google Scholar 

  30. Mathieu, N., Hempel, W.M., Spicuglia, S., Verthuy, C. & Ferrier, P. Chromatin remodeling by the T cell receptor (TCR)-β gene enhancer during early T cell development: Implications for the control of TCR-β locus recombination. J. Exp. Med. 192, 625–636 (2000).

    Article  CAS  Google Scholar 

  31. Ferrier, P. et al. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J. 9, 117–125 (1990).

    Article  CAS  Google Scholar 

  32. Sikes, M.L. & Oltz, E.M. An inducible cell model for studies of V(D)J recombinational control. J. Immunol. Methods 224, 25–29 (1999).

    Article  CAS  Google Scholar 

  33. Oltz, E.M. et al. A V(D)J recombinase-inducible B-cell line: role of transcriptional enhancer elements in directing V(D)J recombination. Mol. Cell. Biol. 13, 6223–6230 (1993).

    Article  CAS  Google Scholar 

  34. Osipovich, O. et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat. Immunol. 5, 309–316 (2004).

    Article  CAS  Google Scholar 

  35. de la Serna, I.L., Roy, K., Carlson, K.A. & Imbalzano, A.N. MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes. J. Biol. Chem. 276, 41486–41491 (2001).

    Article  CAS  Google Scholar 

  36. Sikes, M.L., Suarez, C.C. & Oltz, E.M. Regulation of V(D)J recombination by transcriptional promoters. Mol. Cell. Biol. 19, 2773–2781 (1999).

    Article  CAS  Google Scholar 

  37. Sikes, M.L., Gomez, R.J., Song, J. & Oltz, E.M. A developmental stage-specific promoter directs germline transcription of DßJβ gene segments in precursor T lymphocytes. J. Immunol. 161, 1399–1405 (1998).

    CAS  PubMed  Google Scholar 

  38. Mombaerts, P., Terhorst, C., Jacks, T., Tonegawa, S. & Sancho, J. Characterization of immature thymocyte lines derived from T-cell receptor or recombination activating gene 1 and p53 double mutant mice. Proc. Natl. Acad. Sci. USA 92, 7420–7424 (1995).

    Article  CAS  Google Scholar 

  39. Chi, T.H. et al. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19, 169–182 (2003).

    Article  CAS  Google Scholar 

  40. Chi, T.H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002).

    Article  CAS  Google Scholar 

  41. Ramirez-Carrozzi, V.R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006).

    Article  CAS  Google Scholar 

  42. Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    Article  CAS  Google Scholar 

  43. Hesse, J.E., Lieber, M.R., Gellert, M. & Mizuuchi, K. Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals. Cell 49, 775–783 (1987).

    Article  CAS  Google Scholar 

  44. Chandy, M., Gutierrez, J.L., Prochasson, P. & Workman, J.L. SWI/SNF displaces SAGA-acetylated nucleosomes. Eukaryot. Cell 5, 1738–1747 (2006).

    Article  CAS  Google Scholar 

  45. Hassan, A.H., Neely, K.E. & Workman, J.L. Histone acetyltransferase complexes stabilize Swi/Snf binding to promoter nucleosomes. Cell 104, 817–827 (2001).

    Article  CAS  Google Scholar 

  46. Smale, S.T. & Fisher, A.G. Chromatin structure and gene regulation in the immune system. Annu. Rev. Immunol. 20, 427–462 (2002).

    Article  CAS  Google Scholar 

  47. Baumann, M., Mamais, A., McBlane, F., Xiao, H. & Boyes, J. Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences. EMBO J. 22, 5197–5207 (2003).

    Article  CAS  Google Scholar 

  48. Ooi, L., Belyaev, N.D., Miyake, K., Wood, I.C. & Buckley, N.J. BRG1 chromatin remodeling activity is required for efficient chromatin binding by repressor element 1-silencing transcription factor (REST) and facilitates REST-mediated repression. J. Biol. Chem. 281, 38974–38980 (2006).

    Article  CAS  Google Scholar 

  49. Phelan, M.L., Schnitzler, G.R. & Kingston, R.E. Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases. Mol. Cell. Biol. 20, 6380–6389 (2000).

    Article  CAS  Google Scholar 

  50. Zhang, F. & Boothby, M. T helper type 1-specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-γ promoter are Stat4 dependent. J. Exp. Med. 203, 1493–1505 (2006).

    Article  CAS  Google Scholar 

  51. Weinmann, A.S. et al. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nat. Immunol. 2, 51–57 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Smale (University of California at Los Angeles), J. Chen (Massachusetts Institute of Technology), M. Boothby (Vanderbilt University) and R. Kingston (Harvard University) for reagents, and F. Zhang for technical advice. Supported by the National Institutes of Health (P01 HL68744 and CA100905 to E.M.O.) and a Cancer Center Support Grant (P30 CA68485, Vanderbilt-Ingram Cancer Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene M Oltz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 365 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osipovich, O., Milley Cobb, R., Oestreich, K. et al. Essential function for SWI-SNF chromatin-remodeling complexes in the promoter-directed assembly of Tcrb genes. Nat Immunol 8, 809–816 (2007). https://doi.org/10.1038/ni1481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing