Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes

Abstract

Reversible contraction of immunoglobulin loci juxtaposes the variable (V) genes next to the (diversity)-joining-constant ((D)JC) gene domain, thus facilitating V-(D)J recombination. Here we show that the T cell receptor β (Tcrb) and T cell receptor αδ (Tcra-Tcrd) loci also underwent long-range interactions by looping in double-negative and double-positive thymocytes, respectively. Contraction of the Tcrb and Tcra loci occurred in rearranging thymocytes and was reversed at the next developmental stage. Decontraction of the Tcrb locus probably prevented further Vβ-DJβ rearrangements in double-positive thymocytes by separating the Vβ genes from the DJCβ domain. In most double-negative cells, one Tcrb allele was recruited to pericentromeric heterochromatin. Such allelic positioning may facilitate asynchronous Vβ-DJβ recombination. Hence, pericentromeric recruitment and locus 'decontraction' seem to contribute to the initiation and maintenance of allelic exclusion at the Tcrb locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Tcrb locus.
Figure 2: Reversible contraction of the Tcrb locus during T cell development.
Figure 3: Looping of the Tcrb locus in DN thymocytes.
Figure 4: Long-range interactions in the Tcrb locus during T cell development.
Figure 5: Interaction of the Vβ5 gene region with other gene segments of the Tcrb locus.
Figure 6: Contraction of the Tcra-Tcrd locus in DP thymocytes.
Figure 7: Looping of the Tcra-Tcrd locus in DP thymocytes.
Figure 8: Pericentromeric recruitment of Tcrb and Tcra-Tcrd loci during T cell development.

Similar content being viewed by others

References

  1. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 Suppl., S45–S55 (2002).

    Article  CAS  Google Scholar 

  2. Melchers, F. The pre–B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat. Rev. Immunol. 5, 578–584 (2005).

    Article  CAS  Google Scholar 

  3. von Boehmer, H. Unique features of the pre–T-cell receptor α-chain: not just a surrogate. Nat. Rev. Immunol. 5, 571–577 (2005).

    Article  CAS  Google Scholar 

  4. Yancopoulos, G.D. & Alt, F.W. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271–281 (1985).

    Article  CAS  Google Scholar 

  5. Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type–specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996).

    Article  CAS  Google Scholar 

  6. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of V(D)J recombination. Science 287, 495–498 (2000).

    Article  CAS  Google Scholar 

  7. Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  CAS  Google Scholar 

  8. Mostoslavsky, R. et al. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).

    Article  CAS  Google Scholar 

  9. Kwon, J., Morshead, K.B., Guyon, J.R., Kingston, R.E. & Oettinger, M.A. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol. Cell 6, 1037–1048 (2000).

    Article  CAS  Google Scholar 

  10. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).

    Article  CAS  Google Scholar 

  11. Tripathi, R., Jackson, A. & Krangel, M.S. A change in the structure of Vβ chromatin associated with TCR β allelic exclusion. J. Immunol. 168, 2316–2324 (2002).

    Article  CAS  Google Scholar 

  12. Bolland, D.J. et al. Antisense intergenic transcription in V(D)J recombination. Nat. Immunol. 5, 630–637 (2004).

    Article  CAS  Google Scholar 

  13. Johnston, C.M., Wood, A.L., Bolland, D.J. & Corcoran, A.E. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J. Immunol. 176, 4221–4234 (2006).

    Article  CAS  Google Scholar 

  14. Thiebe, R. et al. The variable genes and gene families of the mouse immunoglobulin κ locus. Eur. J. Immunol. 29, 2072–2081 (1999).

    Article  CAS  Google Scholar 

  15. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  Google Scholar 

  16. Roldán, E. et al. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat. Immunol. 6, 31–41 (2005).

    Article  Google Scholar 

  17. Sayegh, C., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).

    Article  CAS  Google Scholar 

  18. Bosc, N. & Lefranc, M.P. The mouse (Mus musculus) T cell receptor β variable (TRBV), diversity (TRBD) and joining (TRBJ) genes. Exp. Clin. Immunogenet. 17, 216–228 (2000).

    Article  CAS  Google Scholar 

  19. Jackson, A.M. & Krangel, M.S. Turning T-cell receptor β recombination on and off: more questions than answers. Immunol. Rev. 209, 129–141 (2006).

    Article  Google Scholar 

  20. Bosc, N. & Lefranc, M.P. The mouse (Mus musculus) T cell receptor α (TRA) and δ (TRD) variable genes. Dev. Comp. Immunol. 27, 465–497 (2003).

    Article  CAS  Google Scholar 

  21. Krangel, M.S., Carabana, J., Abbarategui, I., Schlimgen, R. & Hawwari, A. Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor α/δ locus. Immunol. Rev. 200, 224–232 (2004).

    Article  CAS  Google Scholar 

  22. Schmitt, T.M. & Zúñiga-Pflücker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  Google Scholar 

  23. Höflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol. 173, 3935–3944 (2004).

    Article  Google Scholar 

  24. Skok, J.A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–854 (2001).

    Article  CAS  Google Scholar 

  25. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  26. Tolhuis, B., Palstra, R-J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  Google Scholar 

  27. Splinter, E., Grosveld, F. & de Laat, W. 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 375, 493–507 (2004).

    Article  CAS  Google Scholar 

  28. Shinkai, Y. et al. Restoration of T cell development in RAG-2–deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    Article  CAS  Google Scholar 

  29. Goldmit, M. et al. Epigenetic ontogeny of the Igk locus during B cell development. Nat. Immunol. 6, 198–203 (2005).

    Article  CAS  Google Scholar 

  30. Bories, J.-C., Demengeot, J., Davidson, L. & Alt, F.W. Gene-targeted deletion and replacement mutations of the T-cell receptor β-chain enhancer: the role of enhancer elements in controlling V(D)J recombination accessibility. Proc. Natl. Acad. Sci. USA 93, 7871–7876 (1996).

    Article  CAS  Google Scholar 

  31. Whitehurst, C.E., Chattopadhyay, S. & Chen, J. Control of V(D)J recombinational accessibility of the Dβ1 gene segment at the TCRβ locus by a germline promoter. Immunity 10, 313–322 (1999).

    Article  CAS  Google Scholar 

  32. Mathieu, N., Hempel, W.M., Spicuglia, S., Verthuy, C. & Ferrier, P. Chromatin remodeling by the T cell receptor (TCR)-β gene enhancer during early T cell development: implications for the control of TCR-β locus recombination. J. Exp. Med. 192, 625–636 (2000).

    Article  CAS  Google Scholar 

  33. Hawwari, A. & Krangel, M.S. Regulation of TCR δ and α repertoires by local and long-distance control of variable gene segment chromatin structure. J. Exp. Med. 202, 467–472 (2005).

    Article  CAS  Google Scholar 

  34. Oestreich, K.J. et al. Regulation of TCRβ gene assembly by a promoter/enhancer holocomplex. Immunity 24, 381–391 (2006).

    Article  CAS  Google Scholar 

  35. Glusman, G. et al. Comparative genomics of the human and mouse T cell receptor loci. Immunity 15, 337–349 (2001).

    Article  CAS  Google Scholar 

  36. Patrinos, G.P. et al. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 18, 1495–1509 (2004).

    Article  CAS  Google Scholar 

  37. Lee, G.R., Spilianakis, C.G. & Flavell, R.A. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nat. Immunol. 6, 42–48 (2005).

    Article  CAS  Google Scholar 

  38. Ryu, C.J. et al. The T-cell receptor β variable gene promoter is required for efficient Vβ rearrangement but not allelic exclusion. Mol. Cell. Biol. 24, 7015–7023 (2004).

    Article  CAS  Google Scholar 

  39. Wilson, A., Held, W. & MacDonald, H.R. Two waves of recombinase gene expression in developing thymocytes. J. Exp. Med. 179, 1355–1360 (1994).

    Article  CAS  Google Scholar 

  40. Mathieu, N. et al. Assessing the role of the T cell receptor β gene enhancer in regulating coding joint formation during V(D)J recombination. J. Biol. Chem. 278, 18101–18109 (2003).

    Article  CAS  Google Scholar 

  41. Chowdhury, D. & Sen, R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241 (2003).

    Article  CAS  Google Scholar 

  42. Wang, L., Senoo, M. & Habu, S. Differential regulation between gene expression and histone H3 acetylation in the variable regions of the TCRβ locus. Biochem. Biophys. Res. Commun. 298, 420–426 (2002).

    Article  CAS  Google Scholar 

  43. Jackson, A., Kondilis, H.D., Khor, B., Sleckman, B.P. & Krangel, M.S. Regulation of T cell receptor β allelic exclusion at a level beyond accessibility. Nat. Immunol. 6, 189–197 (2005).

    Article  CAS  Google Scholar 

  44. Sieh, P. & Chen, J. Distinct control of the frequency and allelic exclusion of the Vβ gene rearrangement at the TCRβ locus. J. Immunol. 167, 2121–2129 (2001).

    Article  CAS  Google Scholar 

  45. Senoo, M. et al. Increase of TCR Vβ accessibility within Eβ regulatory region influences its recombination frequency but not allelic exclusion. J. Immunol. 171, 829–835 (2003).

    Article  CAS  Google Scholar 

  46. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).

    Article  CAS  Google Scholar 

  47. Liang, H.E., Hsu, L-Y., Cado, D. & Schlissel, M.S. Variegated transcriptional activation of the immunoglobulin κ locus in pre-B cells contributes to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004).

    Article  CAS  Google Scholar 

  48. Sleckman, B.P., Khor, B., Monroe, R. & Alt, F.W. Assembly of productive T cell receptor δ variable region genes exhibits allelic inclusion. J. Exp. Med. 188, 1465–1471 (1998).

    Article  CAS  Google Scholar 

  49. Padovan, E. et al. Expression of two T cell receptor α chains: dual receptor T cells. Science 262, 422–424 (1993).

    Article  CAS  Google Scholar 

  50. Pasqual, N. et al. Quantitative and qualitative changes in V-J α rearrangements during mouse thymocytes differentiation: implication for a limited T cell receptor α chain repertoire. J. Exp. Med. 196, 1163–1173 (2002).

    Article  CAS  Google Scholar 

  51. Su, I-H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131 (2003).

    Article  CAS  Google Scholar 

  52. Francis, N.J., Kingston, R.E. & Woodcock, C.L. Chromatin compaction by a polycomb group protein complex. Science 306, 1574–1577 (2004).

    Article  CAS  Google Scholar 

  53. Su, I-H. et al. Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121, 425–436 (2005).

    Article  CAS  Google Scholar 

  54. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H.R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  Google Scholar 

  55. Bender, T.P., Kremer, C.S., Kraus, M., Buch, T. & Rajewsky, K. Critical functions for c-Myb at three checkpoints during thymocyte development. Nat. Immunol. 5, 721–729 (2004).

    Article  CAS  Google Scholar 

  56. Pircher, H. et al. T cell receptor (TcR) β chain transgenic mice: studies on allelic exclusion and on the TcR+ γ/δ population. Eur. J. Immunol. 20, 417–424 (1990).

    Article  CAS  Google Scholar 

  57. Klein, L., Klein, T., Rüther, U. & Kyewski, B. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J. Exp. Med. 188, 5–16 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Ferrier (Centre d'Immunologie de Marseille-Luminy) for Tcra-transgenic Rag2−/− mice; L. Klein (Research Institute of Molecular Pathology) for Tcra-Tcrb-transgenic Rag2−/− mice; A. Souabni for help with the OP9-DL1 differentiation system; and G. Stengl for flow cytometry sorting. Supported by Boehringer Ingelheim, the Austrian GEN-AU initiative (financed by the Bundesminsterium für Bildung, Wissenschaft und Kultur), the Wellcome Trust (J.A.S.) and the Swedish Research Council (R.G.).

Author information

Authors and Affiliations

Authors

Contributions

J.A.S. did most of the FISH experiments and did all confocal analyses of the FISH data; D.F. contributed to some FISH experiments and prepared DNA-FISH probes; R.G. did 3C analyses, in vitro differentiation experiments and flow cytometry sorting; W.d.L. provided training and supervision for the 3C experiments; M.N. did the bioinformatical analyses of the TCR loci; and M.B. planned the experimental outline and wrote the manuscript.

Corresponding author

Correspondence to Ramiro Gisler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

FACS analysis of the lymphoid cells used for 3C analysis. (PDF 217 kb)

Supplementary Fig. 2

Extended configuration of the Tcrb and Tcra/d loci in pre-B cells. (PDF 292 kb)

Supplementary Fig. 3

Additional pictures with looping configurations of the Tcrb and Tcra/d alleles. (PDF 500 kb)

Supplementary Fig. 4

Representative PCR analysis of a 3C experiment. (PDF 217 kb)

Supplementary Fig. 5

Linearity of the PCR assay and BglII digestion of the crosslinked chromatin. (PDF 243 kb)

Supplementary Fig. 6

Interactions of the proximal Dβ1 region with distal Vβ genes of the Tcrb locus in DN pro-T cells. (PDF 181 kb)

Supplementary Fig. 7

Peripheral and pericentromeric location of the Tcrb and Tcra/d loci. (PDF 191 kb)

Supplementary Table 1

Separation of Tcrb and Tcra/d probe signals in developing T cells. (PDF 32 kb)

Supplementary Table 2

Subnuclear location and monoallelic pericentromeric recruitment of the Tcrb and Tcra/d loci in thymocytes and peripheral T cells (PDF 28 kb)

Supplementary Table 3

Predominant recruitment of the Tcrb and Tcra/d loci to pericentromeric heterochromatin. (PDF 74 kb)

Supplementary Table 4

PCR primers used for 3C analysis of the Tcrb locus. (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skok, J., Gisler, R., Novatchkova, M. et al. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat Immunol 8, 378–387 (2007). https://doi.org/10.1038/ni1448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing