Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4


Mast cells are key effector cells in allergic reactions. Aggregation of the receptor FcεRI in mast cells triggers the influx of calcium (Ca2+) and the release of inflammatory mediators. Here we show that transient receptor potential TRPM4 proteins acted as calcium-activated nonselective cation channels and critically determined the driving force for Ca2+ influx in mast cells. Trpm4−/− bone marrow–derived mast cells had more Ca2+ entry than did TRPM4+/+ cells after FcεRI stimulation. Consequently, Trpm4−/− bone marrow–derived mast cells had augmented degranulation and released more histamine, leukotrienes and tumor necrosis factor. Trpm4−/− mice had a more severe IgE-mediated acute passive cutaneous anaphylactic response, whereas late-phase passive cutaneous anaphylaxis was not affected. Our results establish the physiological function of TRPM4 channels as critical regulators of Ca2+ entry in mast cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: BMMCs from Trpm4+/+ and Trpm4−/− mice.
Figure 2: A CAN channel in Trpm4+/+ but not Trpm4−/− BMMCs.
Figure 3: Ca2+ signaling in Trpm4+/+ and Trpm4−/− BMMCs.
Figure 4: Simultaneous measurement of membrane potential and [Ca2+]cyt in Trpm4+/+ and Trpm4−/− BMMCs.
Figure 5: Release of mediators from Trpm4+/+ and Trpm4−/− BMMCs.
Figure 6: PCA in Trpm4+/+ and Trpm4−/− mice.


  1. Galli, S.J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 6, 135–142 (2005).

    Article  CAS  Google Scholar 

  2. Metcalfe, D.D., Baram, D. & Mekori, Y.A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    Article  CAS  Google Scholar 

  3. Ali, H., Cunha-Melo, J.R., Saul, W.F. & Beaven, M.A. Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J. Biol. Chem. 265, 745–753 (1990).

    CAS  PubMed  Google Scholar 

  4. Ramkumar, V., Stiles, G.L., Beaven, M.A. & Ali, H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J. Biol. Chem. 268, 16887–16890 (1993).

    CAS  PubMed  Google Scholar 

  5. Gilfillan, A.M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6, 218–230 (2006).

    Article  CAS  Google Scholar 

  6. Blank, U. & Rivera, J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol. 25, 266–273 (2004).

    Article  CAS  Google Scholar 

  7. Jacobson, K.A. & Gao, Z.G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov. 5, 247–264 (2006).

    Article  CAS  Google Scholar 

  8. Wymann, M.P. et al. Phosphoinositide 3-kinase γ: a key modulator in inflammation and allergy. Biochem. Soc. Trans. 31, 275–280 (2003).

    Article  CAS  Google Scholar 

  9. Ozawa, K. et al. Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells. J. Biol. Chem. 268, 1749–1756 (1993).

    CAS  PubMed  Google Scholar 

  10. Beaven, M.A., Moore, J.P., Smith, G.A., Hesketh, T.R. & Metcalfe, J.C. The calcium signal and phosphatidylinositol breakdown in 2H3 cells. J. Biol. Chem. 259, 7137–7142 (1984).

    CAS  PubMed  Google Scholar 

  11. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    Article  CAS  Google Scholar 

  12. Mohr, F.C. & Fewtrell, C. Depolarization of rat basophilic leukemia cells inhibits calcium uptake and exocytosis. J. Cell Biol. 104, 783–792 (1987).

    Article  CAS  Google Scholar 

  13. Mohr, F.C. & Fewtrell, C. IgE receptor-mediated depolarization of rat basophilic leukemia cells measured with the fluorescent probe bis-oxonol. J. Immunol. 138, 1564–1570 (1987).

    CAS  PubMed  Google Scholar 

  14. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C.F. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294, 752–754 (1981).

    Article  CAS  Google Scholar 

  15. Prawitt, D. et al. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i . Proc. Natl. Acad. Sci. USA 100, 15166–15171 (2003).

    Article  CAS  Google Scholar 

  16. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Article  CAS  Google Scholar 

  17. Nilius, B. et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 278, 30813–30820 (2003).

    Article  CAS  Google Scholar 

  18. Ramsey, I.S., Delling, M. & Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  Google Scholar 

  19. Petersen, O.H. Cation channels: homing in on the elusive CAN channels. Curr. Biol. 12, R520–R522 (2002).

    Article  CAS  Google Scholar 

  20. Cheng, H. et al. TRPM4 controls insulin secretion in pancreatic β-cells. Cell Calcium 41, 51–61 (2007).

    Article  CAS  Google Scholar 

  21. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    Article  CAS  Google Scholar 

  22. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv Eur. J. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  23. Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001).

    Google Scholar 

  24. Nilius, B. et al. The selectivity filter of the cation channel TRPM4. J. Biol. Chem. 280, 22899–22906 (2005).

    Article  CAS  Google Scholar 

  25. Salvatore, C. et al. Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J. Biol. Chem. 275, 4429–4434 (2000).

    Article  CAS  Google Scholar 

  26. Marquardt, D., Walker, L. & Wasserman, S. Adenosine receptors on mouse bone marrow-derived mast cells: functional significance and regulation by aminophylline. J. Immunol. 133, 932–937 (1984).

    CAS  PubMed  Google Scholar 

  27. Duffy, S.M., Lawley, W.J., Conley, E.C. & Bradding, P. Resting and activation-dependent ion channels in human mast cells. J. Immunol. 167, 4261–4270 (2001).

    Article  CAS  Google Scholar 

  28. Fernandez, J.M., Neher, E. & Gomperts, B.D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312, 453–455 (1984).

    Article  CAS  Google Scholar 

  29. Lindau, M. & Neher, E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch. 411, 137–146 (1988).

    Article  CAS  Google Scholar 

  30. Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 4, 787–799 (2004).

    Article  CAS  Google Scholar 

  31. Qiao, H., Andrade, M.V., Lisboa, F.A., Morgan, K. & Beaven, M.A. FcεR1 and Toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 107, 610–618 (2006).

    Article  CAS  Google Scholar 

  32. Inagaki, N., Goto, S., Nagai, H. & Koda, A. Homologous passive cutaneous anaphylaxis in various strains of mice. Int. Arch. Allergy Appl. Immunol. 81, 58–62 (1986).

    Article  CAS  Google Scholar 

  33. Klemm, S. et al. The Bcl10-Malt1 complex segregates FcεRI-mediated nuclear factor κB activation and cytokine production from mast cell degranulation. J. Exp. Med. 203, 337–347 (2006).

    Article  Google Scholar 

  34. Wershil, B.K., Wang, Z.S., Gordon, J.R. & Galli, S.J. Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-α. J. Clin. Invest. 87, 446–453 (1991).

    Article  CAS  Google Scholar 

  35. Nilius, B. & Vennekens, R. From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Arch. 453, 313–321 (2006).

    Article  CAS  Google Scholar 

  36. Nilius, B. et al. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem. 280, 6423–6433 (2005).

    Article  CAS  Google Scholar 

  37. Nilius, B. et al. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J. 25, 467–478 (2006).

    Article  CAS  Google Scholar 

  38. Zhang, Z., Okawa, H., Wang, Y. & Liman, E.R. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 280, 39185–39192 (2005).

    Article  CAS  Google Scholar 

  39. Sasaki, J. et al. Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I α. J. Exp. Med. 201, 859–870 (2005).

    Article  CAS  Google Scholar 

  40. Duffy, S.M. et al. The K+ channel iKCA1 potentiates Ca2+ influx and degranulation in human lung mast cells. J. Allergy Clin. Immunol. 114, 66–72 (2004).

    Article  CAS  Google Scholar 

  41. Earley, S., Waldron, B.J. & Brayden, J.E. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ. Res. 95, 922–929 (2004).

    Article  CAS  Google Scholar 

  42. Fioretti, B., Franciolini, F. & Catacuzzeno, L. A model of intracellular Ca2+ oscillations based on the activity of the intermediate-conductance Ca2+-activated K+ channels. Biophys. Chem. 113, 17–23 (2005).

    Article  CAS  Google Scholar 

  43. Lewis, R. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).

    Article  CAS  Google Scholar 

  44. Peters-Golden, M., Canetti, C., Mancuso, P. & Coffey, M.J. Leukotrienes: underappreciated mediators of innate immune responses. J. Immunol. 174, 589–594 (2005).

    Article  CAS  Google Scholar 

  45. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    Article  CAS  Google Scholar 

  46. Kaplan, A.P., Garofalo, J., Sigler, R. & Hauber, T. Idiopathic cold urticaria: in vitro demonstration of histamine release upon challenge of skin biopsies. N. Engl. J. Med. 305, 1074–1077 (1981).

    Article  CAS  Google Scholar 

  47. Nagai, H. et al. Role of mast cells in the onset of IgE-mediated late-phase cutaneous response in mice. J. Allergy Clin. Immunol. 106, S91–S98 (2000).

    Article  CAS  Google Scholar 

  48. AAAAI. The Allergy Report (The American Academy of Allergy, Asthma and Immunology, Milwaukee, Wisconsin, USA, 2000).

  49. Laffargue, M. et al. Phosphoinositide 3-kinase γ is an essential amplifier of mast cell function. Immunity 16, 441–451 (2002).

    Article  CAS  Google Scholar 

  50. Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA 101, 396–401 (2004).

    Article  CAS  Google Scholar 

  51. Yoshimura, T., Kaneuchi, T., Miura, T. & Kimura, M. Kinetic analysis of the fluorescence reaction of histamine with orthophthalaldehyde. Anal. Biochem. 164, 132–137 (1987).

    Article  CAS  Google Scholar 

  52. Ali, K. et al. Essential role for the p110δ phosphoinositide 3-kinase in the allergic response. Nature 431, 1007–1011 (2004).

    Article  CAS  Google Scholar 

Download references


We thank S. Collins, R. Ramracheya and P. Rorsman for measuring insulin release from pancreatic islets; M. Thomas, M. Wymann, G. Opdenakker and T. Voets for discussions and for help with capacitance measurements (T.V.) and the PCA protocol (M.T. and M.W.); and J. Prenen, E. Martens, S. Buchholz, K. Fischer and C. Wesely for technical assistance. Supported by the Deutsche Forschungsgemeinschaft (M.F., S.P. and V.F.), Fonds der Chemischen Industrie and Sander-Stiftung (V.F.), Forschungsausschuss der Universität des Saarlandes (M.F., V.F.), the Human Frontiers Science Programme (RGP 32/2004 to R.V. and B.N.), the Belgian and Flemish Federal Government (GOA 2004/07, F.W.O., G.0136.00, F.W.O., G.0172.03 and IUAP Nr.3P4/23; Excellentiefinanciering EF/95/010 to R.V. and B.N.), the Flemish fund of scientific research (FWO-Vlaanderen; R.V.) and the Alexander von Humboldt-Stiftung (R.V.).

Author information

Authors and Affiliations



R.V., M.F., B.N. and V.F. contributed to all aspects of the manuscript (conceptual design, experimentation, mouse work, writing); J.O. contributed to gene targeting; M.M. to contributed protein chemistry; F.S. and P.W. contributed to morphological characterization of BMMCs; W.B. contributed to histology, immunocytochemistry, immunohistochemistry and electron microscopy, I.M. contributed to anaphylaxis and glucose tolerance experiments; and S.E.P. performed cell-sorting and RT-PCR of B and T cells.

Corresponding authors

Correspondence to Rudi Vennekens or Marc Freichel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Targeted disruption of the Trpm4 gene. (PDF 95 kb)

Supplementary Fig. 2

Pancreatic β-cell function and expression analysis of Trpm4 and Trpm5 in Trpm4+/+ and Trpm4-/- mice. (PDF 168 kb)

Supplementary Fig. 3

Permeation properties of the endogenous Ca2+-activated cation current in BMMCs. (PDF 130 kb)

Supplementary Fig. 4

Ca2+ signaling and membrane potential in Trpm4+/+ and Trpm4-/- mast cells following DNP and combined adenosine+DNP stimulation in Ca2+-free and 156 mM K+ medium. (PDF 162 kb)

Supplementary Fig. 5

Ca2+ release–activated Ca2+ currents and FcεRI induced signaling in Trpm4+/+ and Trpm4-/- mast cells. (PDF 181 kb)

Supplementary Fig. 6

Membrane potential measurements in BMMCs after antigen stimulation. (PDF 143 kb)

Supplementary Fig. 7

Ca2+-activated Cl and K+ currents in Trpm4+/+ and Trpm4-/- mast cells and a model for the role of TRPM4 in FcεRI-induced Ca2+ signaling. (PDF 185 kb)

Supplementary Fig. 8

GTP-γ-S-induced capacitance changes and LPS-induced activation of Trpm4+/+ and Trpm4-/- mast cells. (PDF 209 kb)

Supplementary Methods (PDF 165 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vennekens, R., Olausson, J., Meissner, M. et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8, 312–320 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing